

SMU Presentation Template Subtitle

Author: Felix Nie

School of Computing and Information Systems email@smu.edu.sg

For Internal Use

SMU Beamer Template

Table of Contents

2 Theory

8 Testing

For Internal Use

SMU Beamer Template

Spring 2023

To use this template, just edit and add slides!

There are 3 color themes prepared for you under **Headline and Central Footer** section. Check the color design of your school when customizing the theme:

https://www.smu.edu.sg/about/university-brand-identity

The remainder of these slides serves as an example of the features you can use: footnotes, citations, columns, mini pages, bullets, links, code, maths, etc.

Intra-frame Footnotes and Citations I

Citation in Beamer works slightly differently from conventional cites as Beamer rewrites its footnote and citation functions. A common issue is the duplication of footnotes in a frame when using footcite.

This paper¹, that paper², and another paper³.

And this paper⁴, that paper⁵, and another paper⁶ again.

For Internal Use

SMU Beamer Template

¹1, "Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multimodal factor analysis", 1970.

²2, "The Expression of a Tensor or a Polyadic as a Sum of Products", 1927.

³3, "Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition", 1970. —

⁴1, "Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multimodal factor analysis", 1970.

⁵2, "The Expression of a Tensor or a Polyadic as a Sum of Products", 1927.

⁶3, "Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition", 1970.

Inter-frame Footnotes and Citations I

Another issue with footcite is the unwanted continuation of the footnote index.

This paper⁷, that paper⁸, and another paper⁹.

And this paper¹⁰, that paper¹¹, and another paper¹² again.

For Internal Use

SMU Beamer Template

⁷1, "Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multimodal factor analysis", 1970.

⁸2, "The Expression of a Tensor or a Polyadic as a Sum of Products", 1927.

^{93, &}quot;Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition", 1970. —

¹⁰1, "Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multimodal factor analysis", 1970.

¹¹2, "The Expression of a Tensor or a Polyadic as a Sum of Products", 1927.

¹²3, "Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition", 1970.

Intra-frame Footnotes and Citations II

This template provides a workaround for these issues. Let's use the customized command firstcite when citing a reference in a frame for the first time, and secondcite for the following citations.

This paper¹, that paper², and another paper³.

And this paper¹, that paper², and another paper³ again.

¹ Harshman et al., "Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multimodal factor analysis 1970. ² Hitchcock, "The Expression of a Tensor or a Polyadic as a Sum of Products", 1927.

³Carroll and Chang, "Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition", 1970.

For Internal Use

SMU Beamer Template

Inter-frame Footnotes and Citations II

This workaround works for the inter-frame scenario as well.

This paper¹, that paper², and another paper³.

And this paper¹, that paper², and another paper³ again.

¹ Harshman et al., "Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multimodal factor analysis 1900. ² Hitchcock, "The Expression of a Tensor or a Polyadic as a Sum of Products", 1927.

³Carroll and Chang, "Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition", 1970.

For Internal Use

SMU Beamer Template

Check this slide to see how columns made the formatting look nice.

Bullets

You can use bullets too:

- Like this one
- & this one

Sub-bullets and Links

- You can also nest sub-bullets
 - Sub-bullet 1
 - Sub-bullet 2
 - Sub-bullet 3
 - Sub-bullet 4

Below is a button that links to a slide in the appendix

Go to graphs

Code and Mathematics

Here is a made-up equation:

$$\hat{A}=ar{m}-\hat{m}_{\mathcal{S}}$$

Notice how these buttons are centered and evenly spread out:

Numbered Bullets

Instead of bullets, you can index by number too

🕗 Like this!

Blocks

Block Title		
Block 1		
Example Block Title		
Block 2		
Alert Block Title		
Block 3		
Block without a title		
		SINGAPORE MANAGEMENT UNIVERSITY
For Internal Use	SMU Beamer Template	Spring 2023 13/14

Conclusion

This is the last numbered slide in the Table of Contents.

Clicking the central bottom link will switch between the title and this slide.

Questions?

For Internal Use

SMU Beamer Template

Spring 2023

- [1] Richard A Harshman et al. "Foundations of the PARAFAC procedure: Models and conditions for an" explanatory" multimodal factor analysis". In: UCLA Working Papers in Phonetics 16 (1970), pp. 1–84. ISSN: 00360236. DOI: 10.1134/S0036023613040165.
- [2] Frank L. Hitchcock. "The Expression of a Tensor or a Polyadic as a Sum of Products". In: Journal of Mathematics and Physics 6.1-4 (1927), pp. 164–189. ISSN: 0097-1421. DOI: 10.1002/sapm192761164.
- [3] J Douglas Carroll and Jih-Jie Chang. "Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition". In: *Psychometrika* 35.3 (1970), pp. 283–319. ISSN: 00333123. DOI: 10.1007/BF02310791.

Appendix - A figure

Return to presentation

For Internal Use

SMU Beamer Templat

Spring 2023

Some Estimators:

- Drift: $\hat{\delta}$
- Boundary: $\hat{b}(t)$

Some Variables:

Ŷ
m̂_S
m̄
m_J(τ)

Return to presentation

Appendix - Code Blocks

Return to presentation

SNU SINGAPORE MANAGEMENT UNIVERSITY

A single-line equation

$$J(heta) = \mathbb{E}_{\pi_{ heta}}[G_t] = \sum_{oldsymbol{s}\in\mathcal{S}} d^{\pi}(oldsymbol{s}) V^{\pi}(oldsymbol{s}) = \sum_{oldsymbol{s}\in\mathcal{S}} d^{\pi}(oldsymbol{s}) \sum_{oldsymbol{a}\in\mathcal{A}} \pi_{ heta}(oldsymbol{a}|oldsymbol{s}) Q^{\pi}(oldsymbol{s},oldsymbol{a})$$

2 A multi-line equation with numbering

$$\begin{aligned} Q_{\text{target}} &= r + \gamma Q^{\pi}(s', \pi_{\theta}(s') + \epsilon) \\ \epsilon &\sim \text{clip}(\mathcal{N}(0, \sigma), -c, c) \end{aligned} \tag{1}$$

Return to presentation

For Internal Use