UNIVERSITY OF TORONTO Faculty of Applied Science and Engineering
 CME263H1- QUIZ \#3
 Discrete Random Variables \& Probability Distributions

Instructor: Prof. Amer Shalaby

$$
2018 / 02 / 15
$$

Name:
Student Number: \qquad

This exam contains 7 pages (including this cover page) and 4 questions. Total of points is 30 . Good luck and Happy reading work!

> Distribution of Marks

Question	Points	Score
1	8	
2	8	
3	6	
4	8	
Total:	30	

1. A contractor is required by a county planning department to submit one, two, three, four, or five forms (depending on the nature of the project) in applying for a building permit. Let $Y=$ the number of forms required of the next applicant. The probability that y forms are required is known to be proportional to y-that is, $p(y)=k y$ for $y=1, \ldots, 5$.
(a) (2 points) What is the value of k ? (Hint: $\sum_{y=1}^{5} p(y)=1$)
(b) (2 points) What is the probability that at most three forms are required?
(c) (2 points) What is the probability that between two and four forms (inclusive)are required?
(d) (2 points) Could $p(y)=y^{2} / 50$ for $y=1, \ldots, 5$ be the pmf of Y.
2. The $p m f$ of the amount of memory X (GB) in a purchased flash drive was given as

x	1	2	4	8	16
$p(x)$	0.05	0.10	0.35	0.40	0.10

Compute the following:
(a) (2 points) Expected value $E(X)$
(b) (2 points) Variance $V(X)$ directly from the definition
(c) (2 points) The standard deviation $\sigma(X)$
(d) (2 points) $V(X)$ using the shortcut formula $\left(V(X)=E\left(X^{2}\right)-E^{2}(X)\right)$
3. Each of 12 refrigerators of a certain type has been returned to a distributor because of the presence of a high-pitched oscillating noise when the refrigerator is running. Suppose that 5 of these 12 have defective compressors and the other 7 have less serious problems. If they are examined in random order, let $\mathrm{X}=$ the number among the first 6 examined that have a defective compressor. Compute the following:
(a) (3 points) $P(X=1)$
(b) (3 points) $P(X \geq 4)$
4. A reservation service employs five information operators who receive requests for information independently of one another, each according to a Poisson process with rate $\mu=2$ per minute.
(a) (4 points) What is the probability that during a given 1-min period, the first operator receives no requests?
(b) (4 points) What is the probability that during a given 1-min period, exactly four of the five operators receive no requests? (Hint: treat either as a binomial process of 5 trials with 4 successes or consider 5 combinations of Poisson processes, e.g. only 1st operation receives a request or only 2 nd operation receives a request and so on)

Probability mass/distribution functions

Binomial Distribution

$$
\begin{gathered}
f(x ; n, p)=b(x ; n p)=\binom{n}{x} p^{x}(1-p)^{n-x} \\
\mu=E(x)=n p \\
\sigma_{x}^{2}=n p(1-p)
\end{gathered}
$$

Hypergeometric Distribution

$$
\begin{aligned}
P(X=x) & =h(x ; n, M, N)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} \\
\mu & =E(X)=\frac{n M}{N} \\
\sigma_{x}^{2} & =n \frac{M}{N} \frac{N-M}{N} \frac{N-n}{N-1}
\end{aligned}
$$

Poisson Distribution

$$
\begin{gathered}
P(x ; \mu)=e^{-\mu} \frac{\mu^{x}}{x!} \\
E(X)=\operatorname{Var}(X)=\mu
\end{gathered}
$$

This page is intentionally left blank to accommodate work that wouldn't fit elsewhere and/or scratch work.

