Homework X

Your Name

February 22, 2016

Problem 33.13

As a comet swings around the Sun, ice on the comet's surface vaporizes, releasing trapped dust particles and ions. The ions, because they are electrically charged, are forced by the electrically charged solar wind into a straight ion tail that points radially away from the Sun. The (electrically neutral) dust particles are pushed radially outward from the Sun by the radiation force on them from sunlight. Assume, that the dust particles are spherical, have density $3.5 \times 10^3 \text{ kg/m}^3$, and are totally absorbing. (a) What radius must a particle have in order to follow a straight path, like path 2 in the figure? (b) If its radius is larger, does it path curve away from the Sun (like path 1) or toward the Sun (like path 3)?

Problem 33.71 — Rainbows

A light ray enters and then leaves a falling, spherical raindrop after one internal reflection. The final direction of travel is deviated (turned) from the initial direction of travel by angular deviation θ_{dev} .

- 1. Show that $\theta_{\text{dev}} = 180^{\circ} + 2\theta_i 4\theta_r$
- 2. Using Snell's law, substitute for θ_r in terms of θ_i and the index of refraction of the water. Then graph θ_{dev} vs. θ_i for the range of possible θ_i values and for n = 1.331 for red light and n = 1.333 for blue light.
- 3. Determine the angle of minimum deviation for the red light
- 4. and the blue light.

- 5. If these colors from the inner and outer edges of a rainbow, what is the angular width of the rainbow?
- (a) Show that $\theta_{dev} = 180^{\circ} + 2\theta_i 4\theta_r$
- (b) Using Snell's law, substitute for θ_r in terms of θ_i and the index of refraction of the water. Then graph θ_{dev} vs. θ_i for the range of possible θ_i values and for n = 1.331 for red light and n = 1.333 for blue light.
- (c) Determine the angle of minimum deviation for the red light
- (d) and the blue light.
- (e) If these colors from the inner and outer edges of a rainbow, what is the angular width of the rainbow?

Problem 33.63

We have a simple model of an optical fiber: a plastic core $(n_1 = 1.58)$ surrounded by a plastic sheath $(n_2 = 1.53)$. A light ray enters the the fiber at angle θ . What is the maximum value of θ that allows total internal reflection at point A?

Solution The light ray enters the fiber at angle θ , it is refracted to angle θ_r and travels until it reaches point A (the point where it reaches the side of the core and the boundary with the sheath). At point A we want all of the light to be reflected back into the core.

Since the line going through the axes is parallel to the sides of the cylinder/optical fiber, θ_r is the same as the angle between the side of fiber and the light ray at point A. Thus the incident angle (between the light ray and the normal) is $90^\circ - \theta_r$. Since none of the light will pass into the sheath, that angle is 90° . We use Snell's law to find the maximum θ_r that results in total internal reflection. $(90^\circ - \theta_r)$ is the minimum angle from the normal to experience total internal reflection, thus the complement θ_r is at a maximum.)

$$n_1 \sin (90^\circ - \theta_r) = n_2 \sin 90^\circ$$
$$n_1 \cos \theta_r = n_2 \cdot 1$$
$$\cos \theta_r = \frac{n_2}{n_1} = \frac{1.53}{1.58} = 0.968$$
$$\theta_r = 14.5^\circ$$

Let's use Snell's law again at the boundary between the air and the core to find the maximum incident angle θ_i

$$n_{\text{air}} \sin \theta_i = n_1 \sin \theta_r$$
$$1 \cdot \sin \theta_i = 1.58 \sin 14.5^\circ$$
$$\theta_i = 23.6^\circ$$

To continue having total internal reflection, the maximum angle the light ray can enter with is 23.6° .