Homework 0

STATEMENT \#1:
Prove that

$$
\begin{equation*}
1+2+3+\ldots+n=\sum_{k=1}^{n} k=\frac{n(n+1)}{2} . \tag{1}
\end{equation*}
$$

Proof. We would like to prove that $\sum_{k=1}^{n} k=\frac{n(n+1}{2}$ so we proceed by induction.

Base Case. For $n=1$ we see that the left hand side of (1) is 1 whereas the right hand side is given by

$$
\frac{1(1+1)}{2}=1
$$

as well. Hence the statement is true for $n=1$

Induction Case. Assume that the statement holds for $\mathrm{n}+1$, that is we need to show that

$$
\begin{aligned}
1+2+3+\ldots+n+(n+1) & =\frac{(n+1)((n+1)+1)}{2} \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

Thus we will begin with the left hand side of (1) to reach our conclusion. By our assumption we know that

$$
1+2+3+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)
$$

Thus we use a bit of algebra as follows to reach our conclusion:

$$
\begin{aligned}
1+2+3+\ldots+n+(n+1) & =\frac{n(n+1)}{2}+(n+1) \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2} \\
& =\frac{(n+1)(n+2)}{2} .
\end{aligned}
$$

Thus by induction we see that statement (1) is true.

