UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS FRANCISCO BELTRÃO CURSO DE LICENCIATURA EM INFORMÁTICA

João José Maria da Silva

Lógica e Aritmética na Filosofia da Matemática de Frege

Francisco Beltrão, Paraná

. ~	1 /	B 4			C - I	
$I \cap I \cap I$	José	1// 1	ria	42	~ ·	11/
JUau	JUSE	ivia	ı ıa	ua		IV C

Lógica e Aritmética na Filosofia da Matemática de Frege

Trabalho de Conclusão de Curso, apresentado a Universidade Tecnológica Federal – Campus Francisco Beltrão, como parte das exigências para a obtenção do título de Licenciado em Informática.

Orientador: Prf. Doutor. Eng. Francisco A. F. Reinaldo

Coorientador: Prof. Dr. Apl. James Tiberius Kirk

Francisco Beltrão, Paraná 2017

RESUMO

Nos Fundamentos da Aritmética (§68), Frege propõe definir explicitamente o operador-abstração 'o número de...' por meio de extensões e, a partir desta definição, provar o Princípio de Hume (PH). Contudo, a prova imaginada por Frege depende de uma fórmula (BB) não derivável no sistema em 1884. Acreditamos que a distinção entre sentido e referência e a introdução dos valores de verdade como objetos foram motivadas para justificar a introdução do Axioma IV, a partir do qual um análogo de (BB) é provável. Com (BB) no sistema, a prova do Princípio de Hume estaria garantida. Concomitantemente, percebemos que uma teoria unificada das extensões só é possível com a distinção entre sentido e referência e a introdução dos valores de verdade como objetos. Caso contrário, Frege teria sido obrigado a introduzir uma série de **Axiomas V** no seu sistema, o que acarretaria problemas com a identidade (Júlio César). Com base nestas considerações, além do fato de que, em 1882, Frege provara as leis básicas da aritmética (carta a Anton Marty), parece-nos perfeitamente plausível que estas provas foram executadas adicionando-se o PH ao sistema lógico de Begriffsschrift. Mostramos que, nas provas dos axiomas de Peano a partir de PH dentro da conceitografia, nenhum uso é feito de (BB). Destarte, não é necessária a introdução do Axioma IV no sistema e, por conseguinte, não são necessárias a distinção entre sentido e referência e a introdução dos valores de verdade como objetos. Disto, podemos concluir que, provavelmente, a introdução das extensões nos Fundamentos foi um ato tardio; e que Frege não possuía uma prova formal de PH a partir da sua definição explícita. Estes fatos também explicam a demora na publicação das Leis Básicas da Aritmética e o descarte de um manuscrito quase pronto (provavelmente, o livro mencionado na carta a Marty).

Palavras-chave: Axioma IV. Axioma V. Princípio de Hume. Valores de Verdade. Gottlob Frege.

LISTA DE ILUSTRAÇÕES

Figura I — Logomarca ABN I	Figura 1 – Logomarca ABNT	
----------------------------	---------------------------	--

LISTA DE TABELAS

Tabela 1 –	Um Exemplo de	tabela	alinhada	que	pode	ser	longa	ou	cur	ta,	cor	ıforr	ne	
	padrão IBGE.													11
Tabela 2 –	Níveis de investi	gação .												12

LISTA DE ABREVIATURAS E SIGLAS

ICHS Instituto de Ciências Humanas e Sociais

LPM Lógica Proposicional Modal

LQM Lógica Quantificacional Modal

UFRJ Universidade Federal do Rio de Janeiro

LISTA DE SÍMBOLOS

- $\Gamma \hspace{1cm} \textbf{Letra grega Gama}$
- Λ Lambda
- ζ Letra grega minúscula zeta
- \in Pertence

SUMÁRIO

T	IEMA	8
1.1	DELIMITAÇÃO DO TEMA	8
1.2	PROBLEMAS E PREMISSAS	8
1.3	OBJETIVOS	8
1.3.1	Objetivo Geral	8
1.3.2	Objetivos Específicos	8
1.4	JUSTIFICATIVA	8
2	PROCEDIMENTOS METODOLÓGICOS	9
3	REFERENCIAL TEÓRICO	9
4	DEMONSTRATIVOS DA APLICAÇÃO E VINCULAÇÃO	9
4.1	APLICAÇÃO	9
4.2	VINCULAÇÃO DO PROJETO	9
5	CRONOGRAMA	10
6	ALGUNS EXEMPLOS DE TABELAS E ALIENAS	11
	APÊNDICES	13
	APÊNDICE A – APÊNDICE 1	14
	APÊNDICE B – APÊNDICE 2	15
	ANEXOS	16
	ANEXO A – CARTA DE ANUÊNCIA	17
	REFERÊNCIAS	18

1 **TEMA**

Apresenta o assunto principal, o estado da arte e o estado da prática, em especial – observe o exemplo. Sobretudo, verifique as normas de citação. Sugere-se entre uma página a duas páginas.

1.1 DELIMITAÇÃO DO TEMA

Indicar, sobretudo a limitação de escopo – propósito, intento efetivo, foco; a limitação geográfica – tipo de empresa, setor, local. A delimitação pode ser feita em aproximadamente meia página.

Diversas ferramentas envolvendo gamificação tais como o $Mathlab^{\odot}$, e o $Khan\ Academy^{\odot}$ (MARCHETTO, 2016), vêm sendo propostas para realizar uma melhora na aplicação de conteúdo em sala de aula.

1.2 PROBLEMAS E PREMISSAS

Descreve-se o contexto das principais dificuldades encontradas. Em geral incorpora-se a pergunta de pesquisa e a premissa ou hipótese levantadas.

1.3 OBJETIVOS

1.3.1 Objetivo Geral

Lembrar que o objetivo geral é sempre uma ação, bem delimitada, portanto exige um verbo no infinitivo.

1.3.2 Objetivos Específicos

Nos objetivos específicos usa-se apenas um verbo / ação por objetivo.

1.4 JUSTIFICATIVA

Deve mostrar, cabalmente, a importância do estudo em questão, portanto, dispensa citações diretas ou indiretas, salvo quando da existência de dados numéricos ou históricos por exemplo.

2 PROCEDIMENTOS METODOLÓGICOS

Classifica-se a pesquisa em pelo menos: natureza; objetivo macro; técnicas e procedimentos a serem utilizados. Tal classificação exige a utilização de referencial teórico próprio.

3 REFERENCIAL TEÓRICO

Indicam-se quais os assuntos serão tratados e principalmente qual o embasamento teórico e seus autores. Pode ser apresentada uma prévia da proposta de trabalho.

4 DEMONSTRATIVOS DA APLICAÇÃO E VINCULA-ÇÃO

4.1 DEMONSTRATIVO DA APLICAÇÃO DOS RECURSOS

Demonstrativo da aplicação dos recursos.

4.2 DEMONSTRATIVO DA VINCULAÇÃO DO PROJETO COM A ÁREA DE INSERÇÃO PROFISSIONAL

Demonstrativo da vinculação do projeto.

5 CRONOGRAMA

Para a realização deste trabalho propõem-se o seguinte cronograma de realização das atividades:

Sugere-se inserir estes pontos: em Etapa mês

- Revisão de literatura
- Definição dos procedimentos
- Coleta de dados
- Análise dos resultados
- Redação da monografia
- Correção e complementação da monografia
- Defesa

plausível que estas provas foram executadas adicionando-se o **PH** ao sistema lógico de Begriffsschrift. Mostramos que, nas provas dos axiomas de Peano a partir de **PH** dentro da conceitografia, nenhum uso é feito de (**BB**). Destarte, não é necessária a introdução.

6 ALGUNS EXEMPLOS DE TABELAS E ALIENAS

Figura 1 – Logomarca ABNT

Fonte: sua fonte a usar

- a) linha 1:
 - subalinea 1;
 - subalinea 2;
- b) linha 2:
 - subalinea 1;
 - subalinea 2;
- c) linha 3:
 - subalinea 1;
 - subalinea 2;
- d) linha 4.

Tabela 1 – Um Exemplo de tabela alinhada que pode ser longa ou curta, conforme padrão IBGE.

Nome	Nascimento	Documento			
Maria da Silva	11/11/1111	111.111.111-11			

Fonte: Produzido pelos autores

Nota: Esta éuma nota, que diz que os dados são baseados na regressão linear.

Anotações: Uma anotação adicional, seguida de várias outras.

Tabela 2 – Níveis de investigação.

Nível de Investi- gação	Insumos	Sistemas de Investigação	Produtos		
Meta-nível	Filosofia da Ciência	Epistemologia	Paradigma		
Nível do objeto	Paradigmas do metanível e evidências do nível inferior	Ciência	Teorias e modelos		
Nível inferior	Modelos e métodos do nível do objeto e problemas do nível inferior	Prática	Solução de problemas		

Fonte: **??**)

APÊNDICE A – APÊNDICE 1

texto texto

APÊNDICE B – APÊNDICE 2

texto texto

ANEXO A – CARTA DE ANUÊNCIA DA COORDENAÇÃO DO CURSO PARA O EDITAL 1/2018 - PROGRAD/PROREC

A coordenação do curso de Licenciatura em Informática declara que a proposta de TRABALHO DE CONCLUSÃO DE CURSO 1, do aluno, abaixo relacionado, está de acordo com os procedimentos e normas estabelecidas no curso e pode ser submetida ao Edital 1/2018 - PROGRAD/PROREC, de Apoio à Execução de Trabalhos de Conclusão de Curso, para o primeiro semestre de 2018.

Título: Lógica e Aritmética na Filosofia da Matemática de Frege

Aluno: João José Maria da Silva

Francisco Beltrão-PR, 27 de junho de 2018.

Profa. Doutora Maici Duarte Leite
Coordenadora do Curso de Licenciatura em Informática

Prf. Doutor. Eng. Francisco A. F. Reinaldo
Prof. Orientador TCC

REFERÊNCIAS

MARCHETTO, R. Utilização do software MATLAB como recurso tecnológico de aprendizagem na transformação de matrizes em imagens . *REVEMAT. Florianopólis -SC ,v11,p118-130,2016*, p. 118–130, 2016. Citado na página 8.