
Delft University of Technology

Delft Center for Systems and Control

Overleaf template
Subtitle

Author
Jesper Kreuk 4445015

August 31, 2020



Contents

1 Writing text 1
1.1 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 How to make use of automatic referencing . . . . . . . . . . . . . 1
1.3 Making lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Creating tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Figures 2

3 Equations 3

1 Writing text

1.1 General remarks

Note: the table of contents is automatically generated.
The numbering and references of things like equations and citations are also
automatically adjusted.

1.2 How to make use of automatic referencing

Referencing things like figures, equations or sections can be done with \ref{},
this is often done in section 3.
If you want to give credit to our an author use \cite{} [1].
Watch our tips and tricks video on the DSA Kalman website to find out how
you can find the sources in BibTeX format easily.

1.3 Making lists

Here is a list of items, the spacing is adjusted for compact notation:
• item 1

• item 2

1.4 Creating tables

It is possible to create tables, as shown in Table 1.

col1 col2
row1 entry 1 entry 2
row2 entry 3 entry 4

Table 1: Example table

sin(x) + cos(x) + tan(x)

1



2 Figures

LATEX allows the user to input figures, in the code you can find how to input a
figure, 2 figures side by side and rotate figures.

Figure 2: Single figure showing the difference between Word and LATEX

(a) Picture 1 (b) Picture 2

Figure 3: 2 figures side by side.

Overleaf supports many image formats, the most useful one for us will be
the eps file format which is infinitely sharp. These images can be created by
MATLAB, an example is shown in Figure 4.

2



0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

E
rr

o
r 

C
o
v
a
r

0 10 20 30 40 50 60 70 80 90 100

No. of samples

-2

-1

0

1

2

E
rr

o
r

Figure 4: This figure is infinitely sharp due to its vector format.

3 Equations

You can write in math mode in between two $ signs, like this: y = c1 sin(ωt) +
c2 cos(ωt).

Equation 1 and 2 both have separate labels and are aligned using the & operator.

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (1)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (2)

Equation 3 has only 1 label for 2 equations.

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

(3)

Use * to disable the equation labels, this works for many numerating commands
(e.g. sections) as well.

σ = ε
∂f(x, α, β, γ)

∂x
∀ x ∈ R

Cases can be made as shown in Equation 4. Note that written text can stand
upright with the text command.

3



y =


ax+ b1 − sin(x) if x ≤ 0

x2 + b2 if 0 < x ≤ 2

(1− x)x3 + b3 if x > 2

(4)

You can use matrices in all kinds of equations as well and fill in whatever you
like. Multiple bracket types are possible.(

a b c
d e f

)
6=
[
sin(x) x2 x3
ȧ b̄ ĉ

]
(5)

When writing repeating matrices you can use dots inside the matrix.

A =

a11 . . . a1n
...

. . .
...

an1 . . . ann

 (6)

It is also possible to use brackets in equations, as shown in Equation 7.

y = min
x

∫ 2

0

(
||(x+ 2)3||2︸ ︷︷ ︸

part 1

+

part 2︷ ︸︸ ︷
cosx2

)
dx (7)

References

[1] Rudolf Kalman. “On the general theory of control systems”. In: IRE Trans-
actions on Automatic Control 4.3 (1959), pp. 110–110.

Listing 1: Kalman filter example code

1 %% Kalman Filter Design
2 % This example shows how to perform Kalman filtering. Both a steady state
3 % filter and a time varying filter are designed and simulated below.
4
5 % Copyright 1986 -2012 The MathWorks , Inc.
6
7 %% Problem Description
8 % Given the following discrete plant
9 %

10 % $$ x(n+1) = Ax(n) + Bu(n) + Bw(n) $$
11 %
12 % $$ y(n) = Cx(n) + Du(n) $$
13 %
14 % where
15 A = [1.1269 -0.4940 0.1129 ,
16 1.0000 0 0,
17 0 1.0000 0];
18
19 B = [ -0.3832
20 0.5919
21 0.5191];
22
23 C = [1 0 0];
24

4



25 D = 0;
26
27 %%
28 % design a Kalman filter to estimate the output y based on the
29 % noisy measurements yv[n] = C x[n] + v[n]
30 %
31
32 %% Steady -State Kalman Filter Design
33 % You can use the function KALMAN to design a steady -state Kalman filter.
34 % This function determines the optimal
35 % steady -state filter gain M based on the process noise
36 % covariance Q and the sensor noise covariance R.
37 %
38 % First specify the plant + noise model.
39 % CAUTION: set the sample time to -1 to mark the plant as discrete.
40
41 Plant = ss(A,[B B],C,0,-1,'inputname ',{'u' 'w'},'outputname ','y');
42
43 %%
44 % Specify the process noise covariance (Q):
45
46 Q = 2.3; % A number greater than zero
47
48 %%
49 % Specify the sensor noise covariance (R):
50
51 R = 1; % A number greater than zero
52
53 %%
54 % Now design the steady -state Kalman filter with the equations
55 %
56 % Time update: x[n+1|n] = Ax[n|n-1] + Bu[n] + Bw[n]
57 %
58 % Measurement update: x[n|n] = x[n|n-1] + M (yv[n] - Cx[n|n-1])
59 %
60 % where M = optimal innovation gain
61 % using the KALMAN command:
62 [kalmf ,L,~,M,Z] = kalman(Plant ,Q,R);
63
64
65 %%
66 % The first output of the Kalman filter KALMF is the plant
67 % output estimate y_e = Cx[n|n], and the remaining outputs
68 % are the state estimates. Keep only the first output y_e:
69
70 kalmf = kalmf (1,:);
71
72 M, % innovation gain
73
74 %%
75 % To see how this filter works , generate some data and
76 % compare the filtered response with the true plant response:
77 %
78 % <<../ kalmdemofigures_01.png >>
79
80
81 %%
82 % To simulate the system above , you can generate the response of
83 % each part separately or generate both together. To
84 % simulate each separately , first use LSIM with the plant
85 % and then with the filter. The following example simulates both together.
86
87 % First , build a complete plant model with u,w,v as inputs and
88 % y and yv as outputs:
89 a = A;
90 b = [B B 0*B];
91 c = [C;C];
92 d = [0 0 0;0 0 1];

5



93 P = ss(a,b,c,d,-1,'inputname ',{'u' 'w' 'v'},'outputname ',{'y' 'yv'});
94
95 %%
96 % Next , connect the plant model and the Kalman filter in parallel
97 % by specifying u as a shared input:
98 sys = parallel(P,kalmf ,1,1,[],[]);
99

100 %%
101 % Finally , connect the plant output yv to the filter input yv.
102 % Note: yv is the 4th input of SYS and also its 2nd output:
103 SimModel = feedback(sys ,1,4,2,1);
104 SimModel = SimModel ([1 3],[1 2 3]); % Delete yv form I/O
105
106
107 %%
108 % The resulting simulation model has w,v,u as inputs and y,y_e as
109 % outputs:
110 SimModel.inputname
111
112 %%
113 SimModel.outputname
114
115 %%
116 % You are now ready to simulate the filter behavior.
117 % Generate a sinusoidal input vector (known):
118 t = (0:100) ';
119 u = sin(t/5);
120
121 %%
122 % Generate process noise and sensor noise vectors:
123 rng(10,'twister ');
124 w = sqrt(Q)*randn(length(t) ,1);
125 v = sqrt(R)*randn(length(t) ,1);
126
127 %%
128 % Now simulate the response using LSIM:
129 out = lsim(SimModel ,[w,v,u]);
130
131 y = out(:,1); % true response
132 ye = out(:,2); % filtered response
133 yv = y + v; % measured response
134
135 %%
136 % Compare the true response with the filtered response:
137 clf
138 subplot (211), plot(t,y,'b',t,ye,'r--'),
139 xlabel('No. of samples '), ylabel('Output ')
140 title('Kalman filter response ')
141 subplot (212), plot(t,y-yv,'g',t,y-ye,'r--'),
142 xlabel('No. of samples '), ylabel('Error ')
143
144 %%
145 % As shown in the second plot , the Kalman filter reduces
146 % the error y-yv due to measurement noise. To confirm this ,
147 % compare the error covariances:
148 MeasErr = y-yv;
149 MeasErrCov = sum(MeasErr .* MeasErr)/length(MeasErr);
150 EstErr = y-ye;
151 EstErrCov = sum(EstErr .* EstErr)/length(EstErr);
152
153 %%
154 % Covariance of error before filtering (measurement error):
155 MeasErrCov
156
157 %%
158 % Covariance of error after filtering (estimation error):
159 EstErrCov
160

6



161 %% Time -Varying Kalman Filter Design
162 % Now , design a time -varying Kalman filter to perform the same
163 % task. A time -varying Kalman filter can perform well even
164 % when the noise covariance is not stationary. However for this
165 % example , we will use stationary covariance.
166 %
167 % The time varying Kalman filter has the following update equations.
168 %
169 % Time update: x[n+1|n] = Ax[n|n] + Bu[n] + Bw[n]
170 %
171 % P[n+1|n] = AP[n|n]A' + B*Q*B'
172 %
173 %
174 % Measurement update:
175 % x[n|n] = x[n|n-1] + M[n](yv[n] - Cx[n|n-1])
176 % -1
177 % M[n] = P[n|n-1] C' (CP[n|n-1]C'+R)
178 %
179 % P[n|n] = (I-M[n]C) P[n|n-1]
180 %
181 %
182 % First , generate the noisy plant response:
183
184 sys = ss(A,B,C,D,-1);
185 y = lsim(sys ,u+w); % w = process noise
186 yv = y + v; % v = meas. noise
187
188 %%
189 % Next , implement the filter recursions in a FOR loop:
190 P=B*Q*B'; % Initial error covariance
191 x=zeros (3,1); % Initial condition on the state
192 ye = zeros(length(t) ,1);
193 ycov = zeros(length(t) ,1);
194 errcov = zeros(length(t) ,1);
195
196 for i=1: length(t)
197 % Measurement update
198 Mn = P*C'/(C*P*C'+R);
199 x = x + Mn*(yv(i)-C*x); % x[n|n]
200 P = (eye(3)-Mn*C)*P; % P[n|n]
201
202 ye(i) = C*x;
203 errcov(i) = C*P*C';
204
205 % Time update
206 x = A*x + B*u(i); % x[n+1|n]
207 P = A*P*A' + B*Q*B'; % P[n+1|n]
208 end
209
210 %%
211 % Now , compare the true response with the filtered response:
212 subplot (211), plot(t,y,'b',t,ye,'r--'),
213 xlabel('No. of samples '), ylabel('Output ')
214 title('Response with time -varying Kalman filter ')
215 subplot (212), plot(t,y-yv,'g',t,y-ye,'r--'),
216 xlabel('No. of samples '), ylabel('Error ')
217
218 %%
219 % The time varying filter also estimates the output covariance
220 % during the estimation. Plot the output covariance to see if the filter
221 % has reached steady state (as we would expect with stationary input
222 % noise):
223 subplot (211)
224 plot(t,errcov), ylabel('Error Covar'),
225
226 %%
227 % From the covariance plot you can see that the output covariance did
228 % reach a steady state in about 5 samples. From then on ,

7



229 % the time varying filter has the same performance as the steady
230 % state version.
231
232 %%
233 % Compare covariance errors:
234 MeasErr = y-yv;
235 MeasErrCov = sum(MeasErr .* MeasErr)/length(MeasErr);
236 EstErr = y-ye;
237 EstErrCov = sum(EstErr .* EstErr)/length(EstErr);
238
239 %%
240 % Covariance of error before filtering (measurement error):
241 MeasErrCov
242
243 %%
244 % Covariance of error after filtering (estimation error):
245 EstErrCov
246
247 %%
248 % Verify that the steady -state and final values of the
249 % Kalman gain matrices coincide:
250 M,Mn

8


	Writing text
	General remarks
	How to make use of automatic referencing
	Making lists
	Creating tables

	Figures
	Equations

