7
TUDelft DCSC

Delft University of Technology

Delft Center for Systems and Control

Overleaf template

Subtitle

Author
Jesper Kreuk 4445015

August 31, 2020

Contents

1 Writing text
LI _Generaltemarkd v v oo o

[1.2 How to make use of automatic referencing|
(1.3 Making lists|
[1.4 Creating tables| o o o

[T N)

2 igures 2

3

1 Writing text

1.1 General remarks

Note: the table of contents is automatically generated.
The numbering and references of things like equations and citations are also
automatically adjusted.

1.2 How to make use of automatic referencing

Referencing things like figures, equations or sections can be done with \ref{},
this is often done in section [l

If you want to give credit to our an author use \cite{} [1].

Watch our tips and tricks video on the DSA Kalman website to find out how
you can find the sources in BibTeX format easily.

1.3 Making lists

Here is a list of items, the spacing is adjusted for compact notation:
e item 1

e item 2

1.4 Creating tables
It is possible to create tables, as shown in Table

‘ coll col2
rowl | entry 1 entry 2
row2 | entry 3 entry 4

Table 1: Example table

sin(x) + cos(x) + tan(x)

2 Figures

ITEX allows the user to input figures, in the code you can find how to input a
figure, 2 figures side by side and rotate figures.

The Virgin THE CHAD &
W HAD BTEX

the gold standard
of math typesetting

i .. free and open-source
proprietary trash crappy math support, has to
piggyback off of LaTeX L

isn't used for
anything more professional
than a high school essay

extremely hard to make

cross-references
bloated with features ubiquitous in
academic publishing

only 12 people will use

default font connotated
with laziness
gives user the freedom to choose

what features they want default font connotated

constantly fucks up
with professionalism

image placement

authors forced to focus on
formatting before content
had to fork file type easy-to-position figures)
plain-text files ensure

universal compatibility

just to be compatible
allows authors to focus on

content before formatting

LATEX

YOUR PAPER MAKES NO GODDAMN SENSE,
BUT IT'S THE MOST BEAUTIFUL THING
THAVE EVER LAIP £YES ON.

formats wildly
(a) Picture 1

(b) Picture 2

Figure 3: 2 figures side by side.

Overleaf supports many image formats, the most useful one for us will be
the eps file format which is infinitely sharp. These images can be created by
MATLAB, an example is shown in Figure

06
L 05]
©
>
Q
Co4 J
<]
oaf .
02 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90 100
ol
x_17
e
oo
_1,
2
0 10 20 30 40 50 60 70 8 90 100

No. of samples

Figure 4: This figure is infinitely sharp due to its vector format.

3 Equations

You can write in math mode in between two $ signs, like this: y = ¢; sin(wt) +
co cos(wt).

Equation[I]and[2]both have separate labels and are aligned using the & operator.

Zpp—1 = Fr@p_1p—1 + Brug (1)
Pyji—1 = FePe_1jp—1 FY + Qr (2)

Equation [3 has only 1 label for 2 equations.

Tpih—1 = FrZrp—1)p—1 + Brug

T (3)

Pyoj—1 = FePy_1jp—1 Fy + Qk
Use * to disable the equation labels, this works for many numerating commands
(e.g. sections) as well.

Of(z,a, 8,7)

=17 R
oc=c¢ o Ve

Cases can be made as shown in Equation [} Note that written text can stand
upright with the tert command.

ax + by —sin(z) ifz <0
y=1< 2%+ by if0<z<2 (4)
(1—x)x® +by ifx>2

You can use matrices in all kinds of equations as well and fill in whatever you
like. Multiple bracket types are possible.

e o

When writing repeating matrices you can use dots inside the matrix.

ail A1n
e (6)

anl .- - Apn

It is also possible to use brackets in equations, as shown in Equation

) part 2
y:min/ (||(x+2)3|\2+cosx2>dac (7)
T Jo \Ne———

part 1

References

[1] Rudolf Kalman. “On the general theory of control systems”. In: IRE Trans-
actions on Automatic Control 4.3 (1959), pp. 110-110.

Listing 1: Kalman filter example code

%% Kalman Filter Design
% This example shows how to perform Kalman filtering. Both a steady state
% filter and a time varying filter are designed and simulated below.

% Copyright 1986-2012 The MathWorks, Inc.

%% Problem Description
% Given the following discrete plant

%
% $$ x(n+1) = Ax(n) + Bu(n) + Bw(n) $$
yA
% $$ y(n) = Cx(n) + Du(n) $$
A
% where
A = [1.1269 -0.4940 0.1129,
1.0000 0 o,
0 1.0000 01;

B = [-0.3832
0.5919
0.51917;

Q
]

[1 0 0];

25 |D = 03

26

27 | hh

28 | % design a Kalman filter to estimate the output y based on the
29 | % noisy measurements yv[n]l = C x[n] + v[n]

30 %

32 | %% Steady-State Kalman Filter Design
33 |% You can use the function KALMAN to design a steady-state Kalman filter.

34 |% This function determines the optimal

35 | % steady-state filter gain M based on the process noise

36 % covariance Q and the sensor noise covariance R.

37 |k

38 | % First specify the plant + noise model.

39 |% CAUTION: set the sample time to -1 to mark the plant as discrete.
40

41 Plant = ss(A,[B B],C,0,-1, 'inputname',{'u' 'w'},'outputname','y');

13 | %%

14 | % Specify the process noise covariance (Q):

45

46 |Q = 2.3; % A number greater than zero

18 | %%

19 | % Specify the sensor noise covariance (R):

50

51 |R = 1; % A number greater than zero

52

53 | W

54 | % Now design the steady-state Kalman filter with the equations
55 | %

56 | % Time update: x[n+1|n] = Ax[nln-1] + Buln] + Bwl[n]
57 |'%

58 |% Measurement update: x[n|n] = x[nln-1] + M (yv[n] - Cx[nln-11)
59 |'%

60 | % where M = optimal innovation gain

61 |% using the KALMAN command:
62 [kalmf ,L,~”,M,Z] = kalman(Plant,Q,R);

65 | h%
66 |% The first output of the Kalman filter KALMF is the plant
67 | % output estimate y_e = Cx[nln], and the remaining outputs

68 |% are the state estimates. Keep only the first output y_e:

N o

kalmf = kalmf (1,:);

71

T2 M, % innovation gain

73

YA

75 |% To see how this filter works, generate some data and

76 | % compare the filtered response with the true plant response:
Tk

78

/8 | % <<../kalmdemofigures_01.png>>

8L | %

82 | % To simulate the system above, you can generate the response of
83 | % each part separately or generate both together. To

84 | % simulate each separately, first use LSIM with the plant

85 | % and then with the filter. The following example simulates both together.
86

87 % First, build a complete plant model with u,w,v as inputs and
88 |% y and yv as outputs:

29 la = A;

90 |b = [B B 0xB];

91 | e = [C;Cl;

92 |d = [0 0 0;0 0 11;

NN NN
Y O W N =

NN NN
0~

CHTONERNNRODOIORNE R~ O

CU s s s s s s s B s s 0 W W W W Www

VGV VGV G VG VU U QY

P = ss(a,b,c,d,-1, 'inputname’' ,{'u w' 'v'},'outputname',{'y"' 'yv'});
%h

% Next, connect the plant model and the Kalman filter in parallel

% by specifying u as a shared input:

sys = parallel(P,kalmf,1,1,[]1,[1);

hh

% Finally, connect the plant output yv to the filter input yv.
% Note: yv is the 4th input of SYS and also its 2nd output:
SimModel = feedback(sys,1,4,2,1);

SimModel = SimModel ([1 3],[1 2 3]); % Delete yv form I/0

hh

% The resulting simulation model has w,v,u as inputs and y,y_e as
% outputs:

SimModel .inputname

hh

SimModel.outputname

%

% You are now ready to simulate the filter behavior.
% Generate a sinusoidal input vector (known):

t = (0:100)';

u = sin(t/5);

hh

% Generate process noise and sensor noise vectors:
rng (10, 'twister ');

w = sqrt(Q)*randn(length(t) ,1);

v = sqrt(R)*randn(length(t) ,1);

hh

% Now simulate the response using LSIM:

out = lsim(SimModel,[w,v,ul]);

y = out(:,1); % true response

ye = out(:,2); % filtered response
yv =y + v; % measured response

hh

% Compare the true response with the filtered response:
clf

subplot (211), plot(t,y,'b',t,ye,'r--"),

xlabel ('No. of samples'), ylabel('Output')
title('Kalman filter response')

subplot (212), plot(t,y-yv,'g',t,y-ye,'r--"'),

xlabel ('No. of samples'), ylabel('Error')

hh

% As shown in the second plot, the Kalman filter reduces

% the error y-yv due to measurement noise. To confirm this,
% compare the error covariances:

MeasErr = y-yv;

MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr) ;

EstErr = y-ye;

EstErrCov = sum(EstErr.*EstErr)/length(EstErr);

%h
% Covariance of error before filtering (measurement error):
MeasErrCov

W
% Covariance of error after filtering (estimation error):
EstErrCov

161 | %% Time-Varying Kalman Filter Design
162 | % Now, design a time-varying Kalman filter to perform the same

163 | % task. A time-varying Kalman filter can perform well even
164 % when the noise covariance is not stationary. However for this
165 | % example, we will use stationary covariance.

167 |% The time varying Kalman filter has the following update equations.

169 | % Time update: x[n+1|n] = Ax[n|n] + Bul[n] + Bwl[nl]
170 1%

171 | % P[n+1|n] = AP[nln]A' + B*Q*B'

172 |'%

173 |'%

174 % Measurement update:

175 % x[nln] = x[nln-1] + M[n]l(yv[n] - Cx[nln-11)
176 |'% -1
L77 | h M[n] = P[nln-1] C' (CP[n|n-1]JC'+R)
178 |'%

179 |'% P[nln] = (I-M[n]C) P[n|n-1]

180 | %

181 %

182 | % First, generate the noisy plant response:

183

124 |sys = ss(A,B,C,D,-1);

185 |y = lsim(sys,u+w); % w = process noise

186 |yv =y + v; % v = meas. noise

187

188 | %%

189 | % Next, implement the filter recursions in a FOR loop:

190 | P=B*Q*B"'; % Initial error covariance

191 x=zeros (3,1); % Initial condition on the state

192 | ye = zeros(length(t),1);
193 | ycov = zeros(length(t),1);
194 | errcov = zeros(length(t) ,1);

196 | for i=1:length(t)

197 % Measurement update

198 Mn = P*C'/(C*P*C'+R);

199 x = x + Mn*(yv(i)-C*x); % x[nln]
200 P = (eye(3)-Mn*C)*P; % Plnln]
201

202 ye(i) = Cx*x;

203 errcov (i) = CxPxC';

204

205 % Time update

206 x = A*x + Bxu(i); % x[n+1|n]
207 P = A*P*A' + B*Q*B'; % P[n+1|n]
208 | end

(

O | %%

1 % Now, compare the true response with the filtered response:
2 | subplot (211), plot(t,y,'b',t,ye,'r--"),

3 | xlabel('No. of samples'), ylabel('Output')

1

NN DD

1
1
1
1
21 title ('Response with time-varying Kalman filter')
215 | subplot (212), plot(t,y-yv,'g',t,y-ye,'r--'),
216 xlabel ('No. of samples'), ylabel('Error')
217
218 | %h
219 |% The time varying filter also estimates the output covariance
220 |% during the estimation. Plot the output covariance to see if the filter
221 | % has reached steady state (as we would expect with stationary input

% mnoise):
subplot (211)
plot(t,errcov), ylabel('Error Covar'),

oy
%

% From the covariance plot you can see that the output covariance did
% reach a steady state in about 5 samples. From then on,

2
2
227
2

8

NN N NN

NN NN

NN N NN

NN NN

% the time varying filter has the same performance as the steady
% state version.

hh

% Compare covariance errors:

MeasErr = y-yv;

MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);
EstErr = y-ye;

EstErrCov = sum(EstErr.*EstErr)/length(EstErr);

hh
% Covariance of error before filtering (measurement error):
MeasErrCov

hh

3

% Covariance of error after filtering (estimation error):
EstErrCov

oy
%

% Verify that the steady-state and final values of the
% Kalman gain matrices coincide:

M, Mn

	Writing text
	General remarks
	How to make use of automatic referencing
	Making lists
	Creating tables

	Figures
	Equations

