Using Microwave Michelson Interferometer To Measure the Speed of Light

Anand P. Dwivedi, Bailey A. Miller, Melanie N. Rex

Physics Department, Stetson University

May 5, 2017

Outline

- Importance
- Michelson Interferometer Overview
- Experimental Setup
- Procedure
- Data Collection
- Results

The Cosmic Speed Limit

- How fast electromagnetic waves travel in vacuum
- Maximum speed at which any information may travel
- Many of the greatest scientific discoveries could not have arisen without knowledge of the speed of light
- Speed of light in vacuum is different than in air
 - index of refraction of air, n = 1.0003

Michelson Interferometer

Microwaves, just like any other waves, can be Doppler shifted. The microwave detector received waves that were shifted to lower frequencies along with unshifted waves

we used the resulting phenomena to calculate the value of c

Figure 1: Schematic Diagram of microwave Michelson Interferometer

Equipment

- Microwave Source
- Fiberboard beam splitter
- Fixed mirror
- Movable mirror
- Air Track and glider
- Photogate
- Detector

Experimental Setup

Figure 2: Schematic Diagram of experimental setup

Data Collection

Frequency at which the microwaves are emitted

$$f = 10.525GHz \tag{1}$$

Average speed of glider

$$v = \frac{d}{t_{v1} - t_{v2}} \tag{2}$$

Average beat frequency

$$B = \frac{N_B}{t_{B1} - t_{B2}}$$
(3)

Data Collection

Figure 3: Potential vs Time graph for beat frequency

Figure 4: Potential vs Time graph for photogate

Results

Trial	Speed of light $(10^8 m/s)$
1	2.988
2	3.007
3	3.023
4	3.002
5	3.000
6	3.002
7	3.003
8	3.008
9	3.011
10	2.995

Table 1: Value of c for each trial

Average value of speed of light

 $c_{measured} = (3.004 \pm 0.003) * 10^8 m/s$

Average value of speed of light

$$c_{measured} = (3.004 \pm 0.003) * 10^8 m/s$$

Accepted value of speed of light

$$c = 2.998 * 10^8 m/s$$

- Percentage error = 0.202%
- Measures the Doppler shift of the microwaves
 - results when one of the interferometer's mirrors is moving

Acknowledgements

- Dr. Kevin Riggs
- Larry Ramsey