
Lab Report - Tutorial Writing
Assignment no. 03

CSE 4614 - Technical Report Writing

Assignment topic : Stack

S. M. Rayeed
ID : 160041045
Lab Group - 1B

July 27, 2019

1

2

1 Introduction

1.1 What is Stack?
A stack is an Abstract Data Type which allows operations at one end only. It

contains data in reverse order. At any given time, we can only access the top element
of a stack. This feature makes it LIFO data structure – where the element which is
placed last, is accessed first.

In other words, a stack is a recursive data structure. Here are the key factors of
a stack:

• a stack is a container of objects or simply data

• a stack is either empty or full

– if empty, no data can be removed or popped

– if full, no data can be added or pushed

• it consists of a top which is the only accessible position

In stack terminology, insertion operation is called PUSH operation and re-
moval operation is called POP operation.

1.2 Stack Representation
As mentioned earlier, stack has two basic operations – PUSH for insertion and

POP for deletion; and only the TOS (Top of Stack) is accessible. Now, if we focus
on how a stack can be represented along with its operations in a graphical way, the
following figure is a good representation –

Figure 1: Stack Representation

3

2 Data Storage in Stack
In a stack, data or objects are stored in reverse order. If any insertion operation

occurs in an empty stack, the data will be TOS element. But after that, the next data
inserted, will be placed on top of the first data. The following figure will give us a
clear view about data storage in stack –

Figure 2: Stack Storage

In the above figure, at first 1 has been inserted into an empty stack named
"s" using the PUSH command. Now, this 1 is the TOS (top of stack) element. After
that, 2 has been inserted and has been placed on top of 1 – meaning that now it is
the TOS and similarly for every insertion, the storage of data will be in reverse order.
Also one more thing to remember, we can only access the TOS at any given time.

One more thing to mention, size of a stack can either be fixed or it can dynam-
ically change. If the size is fixed, once the stack is full, we cannot store any further
data. But the size can be adjusted dynamically through stack-implementation using
linked-list which we will focus later on.

3 Operations in Stack
Operations in stack is pretty-much straight-forward – we only have the freedom

to insert and delete any element. Moreover, we have restrictions in insertion and
deletion –

• insertion can only be at the top of stack (TOS)

• deletion can only occur at the top of stack (TOS)

These restrictions simply means – only the top element of stack is accessible. In
a stack, there can be two operations – PUSH operation and POP operation.

4

3.1 PUSH Operation – Inserting Elements
When we want to insert an element into a stack, PUSH operation is conducted

using the command stackname.push(element_to _be _pushed)) in standard template
library. Steps in PUSH operation is mentioned below –

• Step 1 – Checks if the stack is full.

• Step 2 – If the stack is full, produces an error and exit.

• Step 3 – If the stack is not full, increments the TOS(Top of Stack) to point the
immediate next empty space.

• Step 4 – Adds data element to the stack location where TOS is pointing to.

• Step 5 – Returns successful insertion.

Figure 3: Push Operation in Stack

3.2 POP Operation – Deleting Elements
When we want to delete an element into a stack, POP operation is conducted

using the command stackname.pop() in standard template library. Steps in POP op-
eration is mentioned below –

• Step 1 – Checks if the stack is empty.

• Step 2 – If the stack is empty, produces an error and exit.

• Step 3 – If the stack is not empty, accesses the data element at which top is
pointing.

• Step 4 – Decreases the value of top by 1.

• Step 5 – Returns successful deletion.

5

Figure 4: Pop Operation in Stack

3.3 Push and POP Operation – Graphical Representation
Here is an exmple how the push and pop operation operates in a stack

• Stage 1 – 1 is the top element of the stack

• Stage 2 – stack.push(4) operates on the stack; which means 4 has been inserted
and now it is the top element

• Stage 3 – stack.pop() will remove the Top element i.e. 4 from the stack

• Finally, again 1 is at the Top of stack

Figure 5: Operations in Stack – An Example

6

3.4 Additional Operations
To ensure the efficient use of a stack, we need to check the states of the stack.

The following operations suffice that –

• isFull() :

– checks if stack is full.

– if full, push() operation cannot be conducted.

• isEmpty() :

– checks if stack is empty.

– if empty, pop() operation cannot be conducted.

• peek() : returns stack[top] – provides access to the top element of the stack.
Unlike pop, does not remove the top element. Also known as top() operation.

• size() : determines the size of the stack.

Also, the position of the Top element determines the status of the stack.
Have a look at the following table –

Determining Status of Stack via TOS
Position of TOS Status of Stack

-1 Stack is Empty
0 One Element in the Stack

N-1 Stack is Full
N Overflow State of Stack

4 Implementations of Stack
Stack can be easily implemented using an Array or a Linked List. Arrays are

quick, but are limited in size and Linked List requires overhead to allocate, link, un-
link and deallocate; but is not limited in size. There are many different approaches
in implementation of stack.

4.1 Implementations of Stack – Standard Template Library
In the standard template library of classes, the data type stack is an adapter

class, meaning that a stack is built on top of other data structures. The functions
associated with stack are :

7

• empty() – Returns whether the stack is empty

• size() – Returns the size of the stack

• top() – Returns a reference to the top most element of the stack

• push(A) – Adds the element A at the top of the stack

• pop() – Deletes the top most element of the stack

4.1.1 Stack in STL - Code

Here is an exemplary C++ code that depicts Stack and its operations in STL. The
Function showstack() displays the current state of the stack while being called –

include < b i t s / stdc ++.h>
using namespace std ;

void showstack (s t ac k < int > s)
{

while (! s . empty ()) {
cout << ’ \ t ’ << s . top () << endl ;
s . pop () ;

}
cout << ’ \n ’ ;

}

i n t main ()
{

s t a ck < int > s ;
s . push (1 0) ;
s . push (3 0) ;
s . push (2 0) ;
s . push (5) ;
s . push (1) ;
cout << " Stack : " << endl ;
showstack (s) ;
cout << " S i z e : \ t " << s . s i z e () << " \nTOS : \ t " << s . top () ;
cout << " \n\nPOP : " << endl ;
s . pop () ;
showstack (s) ;

return 0 ;
}

8

4.2 Implementations of Stack – Arrays
Array implementation of stack is easy but the size is static – means the stack

cannot be dynamically increasing or decreasing. Unlike the STL implementation, in
array implementation, the stack-operations are not built-in; hence we need to define
the operational functions like – push(), pop(), top(), isEmpty(), isFull() etc.

As we need to define the functions, it is very much necessary to know how each
functions work and for that, the best way is to know the algorithms that each of these
follows.

4.2.1 Algorithm - isFull()

isFull() is a boolean function that returns a true value if the stack is full, other-
wise returns false. Now, how do we know when the stack is full? Well, in array repre-
sentation, we define the maximum size of the array – in this case which is our stack.
Now, while insertion, the value of the TOS gradually increases. If the TOP equals to
the maximum size, it means that it has reached the limit; no value can be inserted
unless popping. Here, the algorithm is given below –

bool i s F u l l ()
{

i f (top == MAXSIZE)
return true ;

e l s e
return f a l s e ;

}

One thing to notice, if the size of the array is declared as N, then the maxsize
will be N-1; because array elements starts from 0.

4.2.2 Algorithm - isEmpty()

isEmpty() is also a boolean function that returns a true value if the stack is
empty, otherwise returns false. Now, how do we know when the stack is empty? Well,
quite easy! In array representation, we generally initialize the index of the array at
-1; because the array indexing starts from 0, so when the first element of the array is
being inserted, the index should be 0. It implies if the index value is -1 then the array
is empty. The concept is very much straightforward and is shown below –

bool isEmpty ()
{

i f (top == −1)
return true ;

e l s e
return f a l s e ;

}

9

As index-value of -1 implies that the array is empty, the first element inserted
will have the index-value of 0 – which suffices the array-condition.

4.2.3 Algorithm - TOS()

TOS() is a function that returns the element that is on the top position of a stack.
The type of this function depends on the type of the array. The function is necessary
because in stack, we only can operate on the top element. And after every insertion
or deletion operation, the top element changes. This function has no functionality
rather than this –

i n t TOS()
{

return s t a ck [top] ;
}

Here, stack is an array where the indexing starts from 0 and gradually in-
creases by 1 after an insertion and decreases by 1 after a deletion operation. The
integer-type variable "TOP" stores the index-value of the element which is in the top
of stack. So, when this function is called, it returns the element having the TOP index
– that is how it works.

4.2.4 Algorithm - push()

push() is one of the most-influential function in stack as it operates to insert
an element. It is a parameterized function that checks whether the stack is full or
not; and if not, it stores the element on top of the stack and increases the value of
TOP (as TOP stores the index-value of the top-most element, after every insertion, its
value should be increased by 1). Well, needless to say, but if the stack is full, then the
function will show "Overflow" and quit its operation. Here one example of the push
function is being shown –

void push (i n t s t ac k [] , i n t x , i n t n)
{

i f (top == n−1)
{

cout << " Overflow " ;
}

e l s e
{

top = top +1 ;
s t a ck [top] = x ;

}
}

10

Here, n is the size of the stack, x is the element that needs to be inserted in
the stack. As array-indexing starts from 0; in an array of size n, the top-most element
will have an index of n-1 (0 to n-1 : Total n number of elements). So, if the value of top
reaches the limit, push() will show "Overflow", otherwise it will increase the value of
top - that means top will point to the next position and in that position of stack, the
element x will be inserted.

Well, one thing to mention, as we have defined isFull() function, instead of check-
ing manually, we could simply call that function to determine whether the stack is
full or not. In pop() operation, it has been shown.

4.2.5 Algorithm - pop()

pop() is also a very influential function in stack as it operates to delete an ele-
ment. It is a parameterized function that checks whether the stack is empty or not;
and if not, it deletes the element on top of the stack and decreases the value of TOP
(as TOP stores the index-value of the top-most element, after every deletion, its value
should be decreased by 1). Well, needless to say, but if the stack is empty, then the
function will show "Underflow" and quit its operation. Here one example of the pop
function is being shown –

void pop (i n t s t a ck [] , i n t n)
{

i f (isEmpty ())
cout << " Underflow " << endl ;

e l s e
top = top − 1 ;

}

Here, n is the size of the stack. As we have already defined the isEmpty()
function, we can easily implement pop() by calling the isEmpty() function. If the
stack is empty, the isEmpty() function will return True, hence nothing is there to be
popped. So, the pop() will show "Underflow Condition", but otherwise it will de-
crease the value of top – meaning, the element that was next to the top-most element
is now being pointed by top; hence the top-most element is gone.

4.2.6 Stack using Array - Code

Here is an exemplary C++ code that depicts Stack and its operations using array.
Unlike STL, the functions are not pre-defined –

11

include < b i t s / stdc ++.h>
using namespace std ;

i n t top = −1;
i n t n = 3 ;

bool isEmpty ()
{

i f (top == −1)
return true ;

e l s e
return f a l s e ;

}

bool i s F u l l ()
{

i f (top == n−1)
return true ;

e l s e
return f a l s e ;

}

void push (i n t s t ac k [] , i n t x)
{

i f (i s F u l l ())
cout << " Overflow " << endl ;

e l s e
{

top += 1 ;
s t a ck [top] = x ;

}
}

void pop ()
{

i f (isEmpty ())
cout << " Underflow " << endl ;

e l s e
top −= 1 ;

}

i n t s i z e ()

12

{
return top + 1 ;

}

i n t topElement (i n t s t a ck [])
{

return s t a ck [top] ;
}

i n t main ()
{

i n t s t a ck [n] ;
push (s t a c k , 5) ;
cout << " S i z e : \ t " << s i z e () << endl ;
push (s t a c k , 10) ;
push (s t a c k , 24) ;
cout << " S i z e : \ t " << s i z e () << endl ;
push (s t a c k , 12) ;
cout << "TOS : \ t " << topElement (st a c k) << endl ;

f o r (i n t i = 0 ; i < 3 ; i ++)
pop () ;

cout << " S i z e : \ t " << s i z e () << endl ;
pop () ;

return 0 ;
}

4.3 Implementations of Stack – Linked Lists
A stack can be easily implemented through the linked list. In such stack imple-

mentation, a stack contains a top pointer. which is âĂIJheadâĂİ of the stack where
pushing and popping items happens at the head of the list. first node have null in
link field and second node link have first node address in link field and so on and last
node address in "top" pointer.

The main advantage of using linked list over an arrays is that it is possible to im-
plements a stack that can shrink or grow as much as needed. In using array will put
a restriction to the maximum capacity of the array which can lead to stack overflow.
Here each new node will be dynamically allocate. so overflow is not possible.

13

4.3.1 Implementation of Stack using Linked Lists – Functions

In linked list implementation, we have the same functions as before – having
the same analogy, but with different approach of implementations. Also as men-
tioned before, since the stack can dynamically expand or shrink, there's no need of
overflow. The generic functions are mentioned below –

1. push() : Insert the element into linked list at the top node of Stack.

2. pop() : Return top element from the Stack and move the top pointer to the
second node of linked list.

3. peek(): Return the top element.

4. display(): Print all elements of Stack.

4.3.2 Stack using Linked Lists – push() function

• Utility function to add an element data in the stack

• Steps in push() operation –

– creates new node temp and allocate memory

– initializes data into temp data field

– puts top pointer reference into temp link

– makes temp as top of Stack

• An example of the push() function is attached below –

void push (i n t data)
{

s t r u c t Node* temp ;
temp = new Node () ;
i f (! temp)
{

cout << " \ nOverflow " ;
e x i t (1) ;

}
temp−>data = data ;
temp−> l i n k = top ;
top = temp ;

}

14

4.3.3 Stack using Linked Lists – pop() function

• Utility function to pop the top element data from the stack

• Steps in pop() operation –

– checks for stack underflow

– top assign into temp

– assigns second node to top

– destroys connection between first and second

– releases memory of top node

• An example of the pop() function is attached below –

void pop ()
{

s t r u c t Node* temp ;
i f (top == NULL)
{

cout << " \ nUnderflow " << endl ;
e x i t (1) ;

}
e l s e
{

temp = top ;
top = top−> l i n k ;
temp−> l i n k = NULL;
f r e e (temp) ;

}
}

4.3.4 Stack using Linked Lists – peek() function

• Checks for empty stack and if empty, exits

• Otherwise, returns top element data

• An example of the peek() function is attached below –

i n t peek ()
{

i f (! isEmpty ()) return top−>data ;
e l s e e x i t (1) ;

}

15

4.3.5 Stack using Linked Lists – display() function

• Function to print all the elements of the stack

• Steps in display() operation –

– check for stack underflow

– if yes, exits

– otherwise, print node data until temp gets zero

• An example of the display() function is attached below –

void d i s p l a y ()
{

s t r u c t Node* temp ;
i f (top == NULL)
{

cout << " \ nUnderflow " ;
e x i t (1) ;

}
e l s e
{

temp = top ;
while (temp ! = NULL)
{

cout << temp−>data << " " ;
temp = temp−> l i n k ;

}
}

}

4.3.6 Stack using Linked Lists – Complete Code

Here is an exemplary C++ code that depicts Stack and its operations in Linked-
lists –

include < b i t s / stdc ++.h>
using namespace std ;

s t r u c t Node
{

i n t data ;
s t r u c t Node* l i n k ;

} ;

16

s t r u c t Node* top ;

void push (i n t data)
{

s t r u c t Node* temp ;
temp = new Node () ;
i f (! temp)
{

cout << " \ nOverflow " ;
e x i t (1) ;

}
temp−>data = data ;
temp−> l i n k = top ;
top = temp ;

}

i n t isEmpty ()
{

return top == NULL;
}

i n t peek ()
{

i f (! isEmpty ()) return top−>data ;
e l s e e x i t (1) ;

}

void pop ()
{

s t r u c t Node* temp ;
i f (top == NULL)
{

cout << " \ nUnderflow " << endl ;
e x i t (1) ;

}
e l s e
{

temp = top ;
top = top−> l i n k ;
temp−> l i n k = NULL;
f r e e (temp) ;

}

17

}

void d i s p l a y ()
{

s t r u c t Node* temp ;
i f (top == NULL)
{

cout << " \ nUnderflow " ;
e x i t (1) ;

}
e l s e
{

temp = top ;
while (temp ! = NULL)
{

cout << temp−>data << " " ;
temp = temp−> l i n k ;

}
}

}

i n t main ()
{

push (1 1) ;
push (2 2) ;
push (3 3) ;
push (4 4) ;
d i s p l a y () ;
cout << " \nTOS:%d\n" << peek () ;
pop () ;
pop () ;
d i s p l a y () ;
cout << " \nTOS:%d\n" << peek () ;

return 0 ;
}

5 Example – Infix to Postfix Conversion
There are huge number of examples and real-life implementations of stack.

Such as Deck of cards, pile of dishes in kitchen, the tower of Hanoi problem and
so on. From the data-structure perspective, a good example of stack is conversion of

18

expressions. There are 3 types of expression –

1. Prefix – Expression of the form operator a b. When an operator is in front of
every pair of operands.

2. Infix – Expression of the form a operator b. When an operator is in-between
every pair of operands.

3. Postfix – Expression of the form a b operator. When an operator is at the back
of every pair of operands.

Infix to Postfix is a very renowned conversion technique that is implemented by
stack. We are going to have a look into this –

5.1 Why Postfix representation of the expression?
The compiler scans the expression either from left to right or from right to left.

Consider the below expression:
a op1 b op2 c op3 d ; where –
op1 = +, op2 = *, op3 = +

• The compiler first scans the expression to evaluate the expression : b * c

• Then again scan the expression to add a to it

• The result is then added to d after another scan

• The repeated scanning makes it very in-efficient

• That's why it is better to convert the expression to Postfix form before evalua-
tion

The corresponding expression in postfix form is:

abc ∗+d+

The postfix expressions can be evaluated easily using a stack by following the
following algorithm –

5.2 Infix to Postfix Conversion – Algorithm
1. Scan the infix expression from left to right.

2. If the scanned character is an operand, output it.

3. Else –

19

• If the precedence of the scanned operator is greater than the precedence
of the operator in the stack(or the stack is empty or the stack contains a
"("), then push it.

• Else, Pop all the operators from the stack which are greater than or equal
to in precedence than that of the scanned operator. After doing that Push
the scanned operator to the stack. (If you encounter parenthesis while
popping then stop there and push the scanned operator in the stack.)

4. If the scanned character is an "(", push it to the stack.

5. If the scanned character is an ")", pop the stack and and output it until a "(" is
encountered, and discard both the parenthesis.

6. Repeat steps 2-6 until infix expression is scanned.

7. Print the output

8. Pop and output from the stack until it is not empty.

5.3 Conversion of A * B + C * D : –
Figure 6 Shows the conversion algorithm working on the expression –

A∗B +C ∗D

Figure 6: Infix to Postfix Conversion - An Example

Note that the first * operator is removed upon seeing the + operator. Also,
+ stays on the stack when the second * occurs, since multiplication has precedence
over addition. At the end of the infix expression the stack is popped twice, removing
both operators and placing + as the last operator in the postfix expression.

20

5.4 Infix to Postfix Conversion – Implementation using C++
Here is an exemplary C++ code that converts an infix experession into its corre-

sponding postfix expression –

#include < b i t s / stdc ++.h>
using namespace std ;

i n t prec (char c)
{

i f (c == ’ ^ ’)
return 3 ;

e l s e i f (c == ’ * ’ | | c == ’ / ’)
return 2 ;

e l s e i f (c == ’ + ’ | | c == ’− ’)
return 1 ;

e l s e
return −1;

}

void i n f i x T o P o s t f i x (s t r i n g s)
{

std : : stack <char > s t ;
s t . push (’N ’) ;
i n t l = s . length () ;
s t r i n g ns ;
f o r (i n t i = 0 ; i < l ; i ++)
{

i f ((s [i] >= ’ a ’ && s [i] <= ’ z ’) | | (s [i] >= ’A ’ && s [i] <= ’Z ’))
ns+=s [i] ;

e l s e i f (s [i] == ’ (’)
s t . push (’ (’) ;

e l s e i f (s [i] == ’) ’)
{

while (s t . top () ! = ’N ’ && s t . top () ! = ’ (’)
{

char c = s t . top () ;
s t . pop () ;
ns += c ;

}
i f (s t . top () == ’ (’)
{

char c = s t . top () ;

21

s t . pop () ;
}

}
e l s e
{

while (s t . top () ! = ’N ’ && prec (s [i]) <= prec (s t . top ()))
{

char c = s t . top () ;
s t . pop () ;
ns += c ;

}
s t . push (s [i]) ;

}
}

while (s t . top () ! = ’N ’)
{

char c = s t . top () ;
s t . pop () ;
ns += c ;

}

cout << ns << endl ;
}

i n t main ()
{

s t r i n g exp = "a+b * (c^d−e) ^ (f +g *h)− i " ;
i n f i x T o P o s t f i x (exp) ;
return 0 ;

}

6 Complexity Analysis
Below mentioned are the time complexities for various operations that can be

performed on the Stack data structure –

1. Push Operation : O(1) –

• While pushing an element, we can only insert in top of the stack.

• As the insertion can be in one-way, it's a one-step process.

• That's why the time complexity is fixed to O(1).

22

2. Pop Operation : O(1) –

• While popping element, we can only pop the top element from the stack

• As the deletion can be in one-way, it's a one-step process.

• That's why the time complexity is fixed to O(1).

3. Top Operation : O(1) –

• Only the top element of the stack is accessible.

• Accessing the top-most element in a stack is a one-step process as we do
not have to search elsewhere.

• That's why the time complexity is fixed to O(1).

4. Other cases –

• Access O(n) – Stacks offer random access to their contents by popping the
top element off the stack. You have to do this repeatedly to access an arbi-
trary element somewhere in the stack. Therefore, arbitrary access is O(n).

• Search O(n) – Searching for a given value in the stack requires repeatedly
popping elements off the top of the stack until you find the value you seek.
So search is O(n).

To talk about space complexity, we need to know what the problem is. If n items
are needed to be stored in the stack at the same time, then space complexity is O(n).
But n items, can be stored in O(1) space too. By pushing and popping every item, we
can use only 1 space.

7 Applications
There are many applications of stack in data structure. Some of them are men-

tioned below in short –

1. Expression evaluation

• Stack is used to evaluate prefix, postfix and infix expressions.

• In particular let's consider arithmetic expressions. Suppose that, there are
boolean and logical expressions that can be evaluated in the same way.
Control structures can also be treated similarly in a compiler.

• This study of arithmetic expression evaluation is an example of problem
solving where we have to solve a simpler problem and then transform the
actual problem to the simpler one.

23

• We are accustomed to write arithmetic expressions with the operation be-
tween the two operands: a+b or c/d. If we write a+b*c, however, we have
to apply precedence rules to avoid the ambiguous evaluation.

• But there’s no real reason to put the operation between the variables or
values. They can just as well precede or follow the operands. Moreover,
the advantage of prefix and postfix is the need for precedence rules and
parentheses are eliminated.

2. Backtracking

• Backtracking is used in algorithms in which there are steps along some
path (state) from some starting point to some goal

– Find your way through a maze
– Find a path from one point in a graph (roadmap) to another point
– Play a game in which there are moves to be made (checkers, chess)

• In all of these cases, there are choices to be made among a number of op-
tions. We need some way to remember these decision points in case we
want/need to come back and try the alternative.

• Consider the maze. At a point where a choice is made, we may discover
that the choice leads to a dead-end. We want to retrace back to that deci-
sion point and then try the other (next) alternative.

• Again, stacks can be used as part of the solution. Recursion is another,
typically more favored, solution, which is actually implemented by a stack.

3. Memory management

• Any modern computer environment uses a stack as the primary memory
management model for a running program. Whether it's native code (x86,
Sun, VAX) or JVM, a stack is at the center of the run-time environment for
Java, C++, Ada, FORTRAN, etc.

• The discussion of JVM in the text is consistent with NT, Solaris, VMS, Unix
runtime environments.

• Each program that is running in a computer system has its own memory
allocation containing the typical layout as shown below.

4. Call and return process

• When a method/function is called –

(a) An activation record is created; its size depends on the number and
size of the local variables and parameters.

(b) The Base Pointer value is saved in the special location reserved for it
(c) The Program Counter value is saved in the Return Address location

24

(d) The Base Pointer is now reset to the new base (top of the call stack
prior to the creation of the AR)

(e) The Program Counter is set to the location of the first bytecode of the
method being called

(f) Copies the calling parameters into the Parameter region
(g) Initializes local variables in the local variable region

• While the method executes, the local variables and parameters are simply
found by adding a constant associated with each variable/parameter to
the Base Pointer.

• When a method returns –

(a) Get the program counter from the activation record and replace what’s
in the PC

(b) Get the base pointer value from the AR and replace what’s in the BP
(c) Pop the AR entirely from the stack.

8 Conclusion
Stack is a very well-known and one of the most-frequently used data structures.

Having less complexity, ease of understanding and numerous applications in our
life – stack has been playing a vital role in development and implementation of new
techniques.

Thank You ...

	Introduction
	What is Stack?
	Stack Representation

	Data Storage in Stack
	Operations in Stack
	PUSH Operation – Inserting Elements
	POP Operation – Deleting Elements
	Push and POP Operation – Graphical Representation
	Additional Operations

	Implementations of Stack
	Implementations of Stack – Standard Template Library
	Stack in STL - Code

	Implementations of Stack – Arrays
	Algorithm - isFull()
	Algorithm - isEmpty()
	Algorithm - TOS()
	Algorithm - push()
	Algorithm - pop()
	Stack using Array - Code

	Implementations of Stack – Linked Lists
	Implementation of Stack using Linked Lists – Functions
	Stack using Linked Lists – push() function
	Stack using Linked Lists – pop() function
	Stack using Linked Lists – peek() function
	Stack using Linked Lists – display() function
	Stack using Linked Lists – Complete Code

	Example – Infix to Postfix Conversion
	Why Postfix representation of the expression?
	Infix to Postfix Conversion – Algorithm
	Conversion of A * B + C * D : –
	Infix to Postfix Conversion – Implementation using C++

	Complexity Analysis
	Applications
	Conclusion

