
The Parallelization and Optimization of the N-Body Problem using
OpenMP and CUDA

Tushaar Gangarapu, Himadri Pal, Pratyush Prakash and Suraj Hegde
Department of Information Technology

National Institute of Technology Karnataka
Surathkal, Mangaluru 575025, Karnataka, India

{tushaargvsg45, himadripal37, pratyushprakash47, suraj1997pisces}@gmail.com

Dr. Geetha V
Department of Information Technology

National Institute of Technology Karnataka
Surathkal, Mangaluru 575025, Karnataka, India

geethav@nitk.edu.in

Abstract— This research paper aims at exploiting efficient
ways of implementing the N-Body problem. The N-Body
problem, in the field of physics, predicts the movements and
planets and their gravitational interactions. In this paper,
the efficient execution of heavy computational work through
usage of different cores in CPU and GPU is looked into;
achieved by integrating the OpenMP parallelization API and
the Nvidia CUDA into the code. The paper also aims at
performance analysis of various algorithms used to solve the
same problem. This research not only aids as an alternative
to complex simulations but also for bigger data that requires
work distribution and computationally expensive procedures.

Index Terms— N-Body, All-Pairs, Barnes-Hut, Parallelization,
OpenMP, CUDA

I. INTRODUCTION

The N-Body problem, in physics, aims at predicting
the individual motions of a group of celestial bodies
interacting gravitationally [1]. Applications include un-
derstanding of the motion of the Sun, planets, visible
stars etc. Simulations are important in anticipating certain
behaviors in science, especially physics [2]. There is much
room for improving the effectiveness of execution of these
simulations by parallelizing the same with utilities such as
OpenMP and Nvidia CUDA; involving the work distribu-
tion among N-processors (OpenMP) or GPUs (CUDA). The
N-Body problem simulation is a relevant application to
show the improvement in the simulation speed by evenly
distributing the nodes (planets) through a finite number
of processor cores.

This report documents the development of All-Pairs
and Barnes-Hut algorithms used to solve the N-Body
problem. The process of creation of these algorithms
in serial and then in parallel along with the problems
associated with this process have been elucidated. Each
algorithm is tested and the results are compared to draw
conclusions of their strengths and weaknesses. The All-
Pairs algorithm is a naive approach to solving the N-Body

problem, with O(N 2) runtime; involving the calculation
of the force acting on every body with respect to every
other body. The Barnes-Hut algorithm, on the other hand,
optimizes the N-Body problem with O(N log(N )) runtime.

In simple terms, the Barnes-Hut algorithm uses a quad-
tree. For 2D version of the algorithm, we recursively divide
N-bodies into groups by storing them in a quad-tree [3].
The root of the tree represents a space cell with all the
bodies in the system. The tree is built by adding particles
to initially empty root cell, subdividing the cell into four
children when it contains more than one body. As a result,
the internal nodes of the tree have more than one body
while the leaves are just single bodies. The tree is adaptive;
it extends to more levels in regions with high particle
densities. To compute the force, the center of mass is
considered and an approximation based on the the ratio
of the length of a side of the cell to the distance of the
body from the center of mass of the cell; l

D < θ, where θ

is a constant that usually range from 0.5 to 1.2 [3].
This paper is structured as follows: Section II provides

details on the literature survey. Section III explains the
parallelization of the N-Body problem. In Section IV the
details about experimental results have been provided; fol-
lowed by conclusions and references. Appendix provides
the performance statistics of the Barnes-Hut algorithm
in OpenMP on galactic datasets chosen from Princeton
University [4]; with number of bodies ranging from 5 to
30,002.

II. LITERATURE SURVEY

A. Background

The N-Body problem is concerned with the interactions
between celestial bodies [5], where every body in the given
system of bodies is affected by every other body. The
creation of galaxies, the effects of black holes and even
the search for the dark matter are concerned with the N-
Body problem. They all use Newton’s law of gravitation to

1



show the effects on the motions of the bodies due to the
forces of gravity acting between them.

This project focuses on the celestial N-Body problem;
with bodies interacting due to Newton’s Law of Gravita-
tion. The N-Body problem can be described as follows:
where N ≥ 2; For every i = 1,2, ...,N; let Bi with mass mi

be at ~xi , with velocity ~vi and acceleration ~ai at time t ≥
0 and where ri j is the distance between Bi and B j ; i 6= j
and ri j = r j i 6= 0. The force acting on Bi due to B j is ~Fi j ;
a function of the distance between them (ri j ). Assume
that ~Fi j = –~F j i . Given initial positions and velocities of
all Bi ∀ i = 1, 2, ..., N; the general N-Body problem is to
determine the motion of the system if each Bi interacts
with all other B j ’s in the system.

B. Literature Survey

In 1994, the Virgo Consortium was founded for the
purpose of cosmological simulations on supercomputers.
The largest problem worked on through the Virgo Con-
sortium has been the Millennium Run [6]. It was created
to model the formation of the universe and to track how
galaxies and black holes are created. The simulation traced
around 10 billion particles where each particle represented
around 20 million galaxies. It used a code called GADGET–
GAlaxies with Dark matter and Gas intEract [7], which was
originally written in serial to model collisions between
galaxies but has since been developed to run in parallel
and is now used to model a larger range of astrophysical
problems.

The Virgo Consortium produces the GADGET code
along with MPI-HYDRA and FLASH. Although all codes
are used to solve astrophysical N-body problems, they
are used to simulate different areas. MPI-HYDRA looks at
galaxy formation, star formation and the x-ray transmis-
sion due to the heating and cooling of galaxies. FLASH
simulates the thermonuclear flashes seen on the surface
of compact stars such as neutron stars and white dwarfs.

III. N-BODY PROBLEM

A. Sequential All-Pairs Algorithm

The gravitational N-Body problem relies on two of
Newton’s Laws– Newton’s Law of Gravitation, as in (1);
two bodies, Bi and B j of mass mi and m j are attracted to
each other by a force ~Fi j , which is inversely proportional
to the square of the distance between them, ri j (G is
Universal Gravitational Constant) and Newton’s Second
Law of Motion, as in (2); a body, Bi , of mass mi will
experience an acceleration, ~ai , if it experiences a force of
magnitude ~Fi (force due to all the bodies in the system,∑

j 6=i ~Fi j ).

~Fi j =
Gmi m j

r 2
i j

~̂ri j (1)

~ai =
~Fi

mi
(2)

Equations (1) and (2) can be combined to give (3). The
acceleration ~ai can be resolved direction wise as in (4) and
(5). (Here we have considered N-Body problem in 2D.)

~ai =
Gm j

r 2
i j

~̂ri j (3)

~ai ,x = Gm j

r 2
i j

xi −x j

ri j
(4)

~ai ,y =
Gm j

r 2
i j

yi − y j

ri j
(5)

Algorithm 1 given below is the serial All-Pairs algorithm
used to compute forces on all bodies as explained above.

Algorithm 1: Sequential All-Pairs Algorithm

1: Function calculate_force() is
2: foreach i: body do
3: find_force(i, particles)

4: Function find_force(i: body, particles) is
5: foreach j in particles do
6: if j 6= i then
7: d_sq = distance(i, j)
8: ans[i].x += d_x * mass(i) / d_sqˆ3
9: ans[i].y += d_y * mass(i) / d_sqˆ3

B. Parallelization of All-Pairs Algorithm (OpenMP)

The brute force algorithm is very easily parallelized as
it is known in advance exactly how much work needs to
be done. The work can be partitioned easily among pro-
cesses with a block partitioning strategy. The number of
bodies is known and to update each body takes the same
amount of calculation. Assigning each process to calculate
a block of bodies each number o f pl anet s

number o f pr ocessor s in size will mean
each process performs the same amount of calculations.
Therefore partitioning the workload effectively; depicted
by Algorithm 2.

C. Parallelization of All-Pairs Algorithm (CUDA)

Algorithm 3 given below is the parallel All-Pairs algo-
rithm used to compute forces on all bodies using Nvidia
CUDA.

D. Sequential Barnes-Hut Algorithm

The Barnes-Hut algorithm [8] approximates a solution
to the gravitational N-Body problem by clustering groups
of distant bodies together as a single pseudo-body. Each
has an overall mass and center of mass based on the
individual bodies it contains. It achieves this by creating
a tree structure where each node has four children and
each node has a center of mass and total mass based
on that of its children. When created, this tree describes
the whole system where each internal node represents a

2



Algorithm 2: Parallel All-Pairs Algorithm (OpenMP)

1: Function calculate_force() is
2: #pragma omp parallel for
3: foreach i: body do
4: find_force(i, particles)

5: Function find_force(i: body, particles) is
6: #pragma omp parallel for reduction (+ :

ans[i].x, ans[i].y)
7: foreach j in particles do
8: if j 6= i then
9: d_sq = distance(i, j)

10: ans[i].x += d_x * mass(i) / d_sqˆ3
11: ans[i].y += d_y * mass(i) / d_sqˆ3

Algorithm 3: Parallel All-Pairs Algorithm (CUDA)

1: Function calculate_force() is
2: foreach i: body do
3: find_force <<< BLOCKS,

THREADS_PER_BLOCK >>> (index,
particles, ans, size)

4: Function find_force(index, particles, ans, size) is
5: j = particles[treadIdx.x + blockIdx.x *

blockDim.x]
6: if j 6= i then
7: d_sq = distance(i, j)
8: ans[i].x += d_x * mass(i) / d_sqˆ3
9: ans[i].y += d_y * mass(i) / d_sqˆ3

pseudo-body. Each star then uses the tree to work out the
forces it experiences. The algorithm to realize the spatial
system into a tree structure is achieved as follows:

• Divide the whole domain into four square regions of
equal size.

• If any of these regions contains more than one body,
recursively divide that region into four more squares.
Continue until each square contains maximum of one
body.

• Once the tree is created perform a recursive walk to
calculate the center of mass, ~c, as in (6), where mi is
the mass of a node´s i th child and ~ci is the center of
mass of a node´s i th child. .

~c =
∑i

1~ci mi∑i
1 mi

(6)

This creates a tree where the root node (Fig. 1) contains
the whole system. Each node has four children (Fig. 2) and
the leaves of the tree are the individual bodies [9]. The
construction of the tree can be done with O(N log(N ))
runtime. Each body now uses this tree to calculate the

Fig. 1. Barnes-Hut tree structure

Fig. 2. Barnes-Hut domain decomposition

acceleration it experiences due to every other body. The
force calculation is performed for each body. It recursively
finds nodes in the tree which are considered to be far
enough away to perform an interaction with. The cal-
culation to decide whether a node is far enough away
is called the opening condition. It is important because
it decides how many bodies can be grouped together
as a pseudo-body; the more bodies which are grouped
together, the less accurate the calculations will be. The
opening condition is a simple relationship, l

D < θ, where
θ is the fixed accuracy parameter which is positive, l is the
width of the current internal node and D is the distance of
the body from the center of of mass of the current node to
the body the force is being calculated for. The sequential
algorithm for the same is given as Algorithm 4.

E. Parallel Barnes-Hut Algorithm using OpenMP– Force
Computation is Parallelized (Method-1)

Two major issues involved in the analysis of a parallel
algorithm include Decomposition– divide the problem
amongst available processes and Communication– need
to communicate between processes to assure they have
data they need. Decomposition is associated with load
balancing while Communication bottleneck is a major
issue; need for minimization of communication volume.
Barnes-Hut algorithm construction is as follows:

• Build the quad-tree.
• Calculate the center of mass for all cells.

3



Algorithm 4: Sequential Barnes-Hut Algorithm

1: Function build_tree() is
2: Reset Tree
3: foreach i: particle do
4: root_node→insert_to_node(i)

5: Function insert_to_node(new_particle) is
6: if num_particles > 1 then
7: quad = get_quadrant(new_particle)
8: if subnode(quad) does not exist then
9: create subnode(quad)

10: subnode(quad)→insert_to_node(new_particle)
11: else if num_particles == 1 then
12: quad = get_quadrant(new_particle)
13: if subnode(quad) does not exist then
14: create subnode(quad)

15: subnode(quad)→insert_to_node(existing_particle)

16: quad = get_quadrant(new_particle)
17: if subnode(quad) 6= NULL then
18: create subnode(quad)

19: subnode(quad)→insert_to_node(new_particle)
20: else
21: existing_particle ← new_particle

22: num_particles++

23: Function compute_mass_distribution() is
24: if new_particles == 1 then
25: center_of_mass = particle.position
26: mass = particle.mass
27: else
28: forall child quadrants with particles do
29: quadrant.compute_mass_distribution
30: mass += quadrant.mass
31: center_of_mass = quadrant.mass *

quadrant.center_of_mass

32: center_of_mass /= mass

33: Function calculate_force(target) is
34: Initialize force ← 0
35: if num_particles == 1 then
36: force = gravitational_force(target, node)
37: else
38: if l/D < θ then
39: force = gravitational_force(target, node)
40: else
41: forall node : child nodes do
42: force += node.calculate_force(node)

43: Function compute_force() is
44: forall particles do
45: force = root_node.calculate_force(particle)

• Traverse the quad-tree.
• Calculate the force on the nodes.

Building the quad-tree needs synchronization. Since the
computation of the center of mass depends on the center
of masses of corresponding sub-cells, data dependencies
are introduced– can be parallelized per level. To compute
the force, we need other particles’ center of mass, but we
don’t need to modify this information– can be parallelized.
The value of θ plays a crucial role- a higher value of θ

implies that fewer nodes are considered for the calcula-
tion of force and hence increasing the window for error.
Algorithm 5 given below, depicts the parallelized version
of Barnes-Hut algorithm in the way described above.

Algorithm 5: Parallel Barnes-Hut Algorithm
(OpenMP)– Force Computation is Parallelized

1: Function compute_force() is
2: #pragma omp parallel for
3: forall particles do
4: force = root_node.calculate_force(particle)

5: Function calculate_force(target_body) is
6: force = 0
7: if num_particles == 1 then
8: force = gravitational_force(target_body, node)
9: else

10: if l/D < θ then
11: force = gravitational_force(target_body,

node)
12: else
13: #pragma omp parallel for
14: forall node : child nodes do
15: #pragma omp critical
16: force += node.calculate_force(node)

F. Parallel Barnes-Hut Algorithm using OpenMP– Mass
Distribution is Parallelized (Method-2)

In computing the center of mass of the nodes, even
though the presence of data level dependencies restricts
parallelizing, some level of parallelism can still be in-
troduced as the computation done for each quad is
independent of the other. So, all these computations can
occur in parallel; this speeds up the process significantly.
So, in the Algorithm-6 described below only the center of
mass computation has been parallelized leaving the force
computation as it is. The graphs plotted have been shown
in the sections that follow.

Parallelization of the Barnes-Hut algorithm has many
issues making it more complex than anything so far seen
in this project. The main issue is the lack of prescience of
the number of calculations done by each process. With the
increase in the tree traversal depth, the number of force
calculations increase and the exact depth is dependent on
the position of the current body, which is random.

4



Algorithm 6: Parallel Barnes-Hut Algorithm
(OpenMP)– Mass Distribution is Parallelized

1: Function compute_mass_distribution() is
2: if new_particles == 1 then
3: center_of_mass = particle.position
4: mass = particle.mass
5: else
6: #pragma omp parallel for
7: forall child quadrants with particles do
8: quadrant.compute_mass_distribution
9: #pragma omp critical

10: mass += quadrant.mass
11: center_of_mass = quadrant.mass *

quadrant.center_of_mass

12: center_of_mass /= mass

IV. WORK DONE AND RESULTS ANALYSIS

The sequential All-Pairs algorithm is implemented in
C++. The parallelization of the algorithm is performed
using OpenMP and CUDA. OpenMP is a usage of multi-
threading [11]; an expert string forks a predetermined
number of slave strings and the framework separates an
errand among them. The strings then run simultaneously,
with the runtime environment assigning strings to dis-
tinctive processors. The segment of code that is intended
to keep running in parallel is stamped likewise, with a
preprocessor order that will bring about the strings to
shape before the segment is executed. Each string has
an id appended to it which can be acquired utilizing a
method omp_get_thread_num(). After the execution of the
parallelized code, the strings join over into the master
string, which proceeds with forward to the end of the
system.

CUDA is an extension of the C that allows the program-
mer to take advantage of the massive parallel computing
power of an Nvidia graphics card in order to do general
purpose computation [12]. In order to run efficiently on
a GPU, you need to have many hundreds of threads.
Generally, the more threads you have, the better.If you
can break the problem down into at least a thousand
threads, then CUDA probably is the best solution. When
something extremely computationally intense is needed,
the problem can simply call the CUDA kernel function
written by the user. GPUs use massive parallel interfaces
in order to connect with it’s memory; is approximately 10
times faster than a typical CPU to memory interface.

This section focuses on running each algorithm in serial
and in parallel. Testing Speedup, Cost and Efficiency (see
equations (7), (8), (9)). All the tests for All-Pairs algorithm
(openMP) are ran on nearly identical machines with the
following specification:

• Model– Asus
• Processor– i5 7200U @ 4x 3.1GHz

• Memory– 8GB DDR3 at 1333MHz
• Network– 10/100/1000 Gigabit LAN Connection
• Operating System– Arch Linux

All the tests for All-Pairs algorithm (CUDA) are ran on
nearly identical machines with the following specification:

• Nvidia Tesla Server
• Operating System– Ubuntu Linux

All the tests for Barnes-Hut algorithm (openMP, both
methods) are ran on nearly identical machines with the
following specification:

• Model– HP
• Processor– i5 6200U
• Memory– 8GB DDR3 @ 2.8GHz
• Network– 10/100/1000 Gigabit LAN Connection
• Operating System– Ubuntu Linux

Speedup(S) = T i me f or Ser i alE xecuti on

T i me f or Par al lel E xecuti on
(7)

Cost (C ) = Par al lel E xecuti on

×Number o f Pr ocessor s (8)

E f f i ci enc y(E) = Speedup

T i me f or Par al lel E xecuti on
(9)

A. Result and Analysis of Parallel All-Pairs algorithm in
OpenMP and Nvidia CUDA

Fig. 3. Serial (black) vs. Parallel (red) execution for Planets.txt [4] for 5
bodies using OpenMP (Algorithm 2)

For inputs with a small number of planets we find se-
quential execution to be faster than parallelized OpenMP
code (Fig. 3). This supports the fact that threads have a
high cost of initialization, which outweighs the execution
time since it is smaller in comparison. When we increase
the input size, the parallel code runs much faster than
the sequential counterpart. Since the input is large, the
time of execution is also larger than the tread spawn
overheads. (Fig. 4). However we notice that increasing the
threads beyond a certain value does not cause any further
decrease. This is because the CPU on the test machine
cannot support more than 4 threads. Therefore we see a

5



Fig. 4. Serial (black) vs. Parallel (red) execution for galaxymerge2.txt [4]
for 4000 bodies using OpenMP (Algorithm 2)

Fig. 5. Serial (black) vs. Parallel (red) execution for galaxy30k.txt [4] for
30002 bodies using OpenMP (Algorithm 2)

Fig. 6. Serial (black) vs. Parallel (green) execution for planets.txt [4] for
5 bodies using CUDA (Algorithm 3)

Fig. 7. Serial (black) vs. Parallel (green) execution for galaxymege2.txt
[4] for 4000 bodies using CUDA (Algorithm 3)

Fig. 8. Serial (black) vs. Parallel (green) execution for galaxy30k.txt [4]
for 30002 bodies using CUDA (Algorithm 3)

Fig. 9. Serial (green) vs. Parallel (blue) execution for Planets.txt [4] for
5 bodies using OpenMP (Algorithm 5)

Fig. 10. Serial (green) vs. Parallel (blue) execution for galaxymerge2.txt
[4] for 4000 bodies using OpenMP (Algorithm 5)

Fig. 11. Serial (green) vs. Parallel (blue) execution for galaxy30k.txt [4]
for 30002 bodies using OpenMP (Algorithm 5)

6



Fig. 12. Serial (black) vs. Parallel (purple) execution for galaxy10k.txt
[4] for 10001 bodies using OpenMP (Algorithm 6)

Fig. 13. Serial (black) vs. Parallel (purple) execution for galaxy30k.txt
[4] for 30002 bodies using OpenMP (Algorithm 6)

flat curve after. For an input file with very large inputs the
graph remains the same as the previous graph. However
there is a larger speedup (Fig. 5).

From Figures 3, 4 and 5 we observe that there is a
large speedup for input files with a large size and this
speedup is limited to the number of threads on the test
machine. For small inputs, sequential execution remains
faster than parallelization with OpenMP. In the case of
parallelization with CUDA, we see an exponential decrease
in CUDA time. This follows from the fact that the GPU
has an exponentially larger thread pool as compared to
the CPU (Figures 6, 7, 8).

Fig. 14. Serial (black) vs. Parallel (purple) execution for planets.txt [4]
for 5 bodies using OpenMP (Algorithm 6)

For a very small input the communication over PCI
lanes is the bottleneck as execution time is negligible.
Hence we see that sequential is comparable to the CUDA
program. In the case of Fig. 6 we find parallel execution
with CUDA an order of 100 times faster than sequential.
As the number of threads per block is increased beyond a
certain value the execution time decreases drastically. Fig.
8 shows CUDA execution times for an input file of very
large size. The speedup of CUDA with 2048 threads per
block over sequential is approximately 350. This means
with heavy parallelization of the GPU, we can achieve
the results much quicker than doing the same on the
CPU. This confirms the fact that GPUs typically have more
multiprocessing capabilities than the CPU.

B. Result and Analysis of Parallel Barnes-Hut Algorithm
using OpenMP

In Fig.9, the sequential algorithm proved to be efficient
as compared to OpenMP. One explanation for the same
would include the communication overhead and thread
overhead for such small dataset (5 bodies). In Fig. 10,
it was observed that the OpenMP implementation per-
formed better in the case of 2 and 4 threads but the over-
heads increased as the number of threads increased from
4. In the case of Fig. 11, the Barnes-Hut implementation
in OpenMP algorithm performed better in the case of 2
threads but increased progressively before reducing once
in 8 threads and increasing again.

In Fig. 12, the time reduced drastically for 8 threads and
above. Although, an anomaly was observed for 4 threads.
In case of Fig. 13, it was observed that for galaxy30k
performed better than the sequential for 4 and 8 threads
and then increased linearly with the number threads,
again changing the trend from 16 threads onwards. As
observed in Fig. 14 for planets.txt the overhead increases
progressively. Hence, we can infer that the dataset plan-
ets.txt has data which does not go well with the tree
building methodology.

The value of θ determines how deep the Barnes-Hut
algorithm traverses the tree. The smaller the value the
deeper it goes, increasing accuracy but at the cost of
an increased number of calculations and therefore a
slower running time. Experimentally it can be seen that
as θ tends to 0 the number of calculations increases, as
expected. As θ reaches 0.3 the number of calculations
begin to rise quickly and at 0.1 the larger problems have
to computer many more calculations. When θ is 0 the
number of calculations is equal to the number of bodies
in the set. This shows the algorithm has become just as
complex as the All-Pairs method, with each body needing
to calculate forces due to every other star.

V. CONCLUSIONS

In this paper, we analyzed two algorithms to solve the
classical N-Body problem– the naive All-Pairs Algorithm
and quad-tree based Barnes-Hut Algorithm in OpenMP
and CUDA. Compared to the sequential execution we

7



noticed a decrease in execution time till a certain level of
parallelization, after which the time either remained the
same or increased. The performance of these algorithms
can be further bettered by running the algorithms on a
processor with a higher multiprogramming support.

The parallel direct method scaled linearly with respect
to the number of processes. The communication overhead
for the parallel direct method is negligible as the number
of stars is so small, but as more processes are added the
algorithm becomes plausible for larger numbers of N, but
with increasing N will come increasing communication
overheads. Due to limitations with time this project only
implemented a simple parallel version of the Barnes-
Hut algorithm that contains no load balancing. The com-
putation time of the Parallel Barnes-Hut scaled almost
linearly, but with an increasing number of processes came
an increasing communication overhead which soon out-
weighed the benefit seen due to the increase in computa-
tion time. The Barnes-Hut algorithm can offer substantial
increases in running time depending on the choice of θ.
This shows how well the naive method is improved by
parallel computing.

APPENDIX

The appendix shows the analysis of the Barnes-Hut al-
gorithm implemented in Parallel using OpenMP (method-
1). The Sequential and Parallel times have been shown in
Table 1; for all the galactic datasets [4] with number of
bodies ranging from 5 to 30002.

ACKNOWLEDGMENT

We would like to thank Dr. Geetha V for her valuable
comments and suggestions to improve the quality of the
paper. We are also grateful to Miss Archana for helping us
review our work regularly. We would also like to thank the
Department of Information Technology, NITK Surathkal
for providing us with Tesla GPU for us to test our code.

REFERENCES

[1] En.wikipedia.org. (2018). N-body problem. [online]. Available:
https://en.wikipedia.org/wiki/N-body_problem. [Accessed
7 Jan. 2018].

[2] Carugati, N. J. (2016). The Parallelization and Optimization of the
N-Body Problem using OpenMP and OpenMPI.

[3] 15418.courses.cs.cmu.edu. (2018). The Barnes-Hut Algorithm : 15-
418 Spring 2013. [Online]. Available: http://15418.courses.cs.
cmu.edu/spring2013/article/18. [Accessed: 07- Jan- 2018].

[4] Cs.princeton.edu. (2018). COS 126 Programming Assignment: N-
Body Simulation. [Online]. Available: http://www.cs.princeton.
edu/courses/archive/fall04/cos126/assignments/nbody.
html. [Accessed: 07- Jan- 2018].

[5] Damgov, V., Gotchev, D., Spedicato, E., & Del Popolo, A. (2002). N-
body gravitational interactions: a general view and some heuristic
problems. arXiv preprint astro-ph/0208373.

[6] Beltoforion.de. (2018). The Barnes-Hut Galaxy Simulator.
[Online]. Available: http://beltoforion.de/article.php?
a=barnes-hut-galaxy-simulator. [Accessed: 07- Jan- 2018].

[7] Wwwmpa.mpa-garching.mpg.de. (2018). Cosmological
simulations with GADGET. [Online]. Available: http://wwwmpa.
mpa-garching.mpg.de/gadget/. [Accessed: 07- Jan- 2018].

[8] Barnes, J., & Hut, P. (1986). A hierarchical O (N log N) force-
calculation algorithm. nature, 324(6096), 446.

[9] Burtscher, M., & Pingali, K. (2011). An efficient CUDA imple-
mentation of the tree-based barnes hut n-body algorithm. GPU
computing Gems Emerald edition, 75.

[10] C. Swinehart. Arborjs.org. (2018). The Barnes-Hut Algorithm. [On-
line]. Available: http://arborjs.org/docs/barnes-hut. [Ac-
cessed: 07- Jan- 2018].

[11] Computing.llnl.gov. (2018). OpenMP. [Online]. Available: https:
//computing.llnl.gov/tutorials/openMP/. [Accessed: 07- Jan-
2018].

[12] Docs.nvidia.com. (2018). Programming Guide :: CUDA
Toolkit Documentation. [Online]. Available: http://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html#
cuda-general-purpose-parallel-computing-architecture.
[Accessed: 07- Jan- 2018].

8



TABLE I

PERFORMANCE OF SERIAL CODE VS. PARALLEL CODE ON GALACTIC DATASETS [4] OF BARNES-HUT ALGORITHM IN OPENMP (METHOD-1)

Dataset Number of Particles
Serial Time

(seconds) Parallel Time (seconds)

Number of Threads

1 2 4 8 16 32

asteroids1000.txt 1000 0.023097 0.020348 0.021905 0.030464 0.063325 0.121116 0.221256
cluster2582.txt 2582 0.004927 0.005837 0.005042 0.011231 0.008328 0.011733 0.014243
collision1.txt 2000 0.004917 0.004829 0.004447 0.006030 0.005751 0.009468 0.012608
collision2.txt 2002 0.006227 0.006008 0.006098 0.006309 0.006821 0.009951 0.013182

galaxy1.txt 802 0.015414 0.015616 0.015217 0.020928 0.045315 0.072090 0.110689
galaxy2.txt 652 0.012274 0.012615 0.014664 0.023931 0.028826 0.040485 0.072064
galaxy3.txt 2001 0.091639 0.087738 0.094466 0.141264 0.264529 0.488200 0.975077
galaxy4.txt 502 0.012875 0.013325 0.010431 0.012065 0.027304 0.037397 0.051786

galaxy10k.txt 10001 2.325312 2.357691 2.422882 3.557520 6.697054 13.312913 27.061886
galaxy20k.txt 20001 13.663441 15.492622 16.259973 23.813991 45.588013 88.301931 160.741782
galaxy30k.txt 30002 0.032405 0.032411 0.031647 0.057545 0.050811 0.075314 0.171779

galaxyform2500.txt 2500 0.007052 0.005922 0.006162 0.006707 0.008641 0.011501 0.016563
galaxymerge1.txt 2000 0.004920 0.005160 0.004812 0.006784 0.006742 0.008701 0.018789
galaxymerge2.txt 4000 0.011205 0.010364 0.003930 0.012193 0.011976 0.018860 0.024891
galaxymerge3.txt 2901 0.009433 0.009095 0.009045 0.015460 0.011692 0.012852 0.019202

planets.txt 5 0.000070 0.000120 0.000406 0.001250 0.001246 0.001997 0.003918
saturnrings.txt 11987 0.024471 0.024749 0.020095 0.025863 0.032043 0.038763 0.064468
spiralgalaxy.txt 843 0.017879 0.017627 0.023605 0.024740 0.052584 0.091534 0.166260

9


