
SPARQL Query Optimization for Federated Linked
Data

Desared Osmanllari

Chair of Computer Science 5 “Information Systems and Database Technology”
at RWTH Aachen University,

Ahornstr. 55, 52056 Aachen, Germany
desared.osmanllari@rwth-aachen.de

Abstract. The Web has evolved from a system of internet servers supporting for-
matted documents into a web of linked data. In the last years, the Web of Data
is constantly growing. Consequently, it has developed a large collection of inter-
linked data sets from multiple domains. To exploit the diversity of all available
data, federated queries are needed. However, many problems such as processing
power, query response time, high workload or outdated information are hindering
the query processing. In this paper, I am aiming to explain various optimization
techniques which have the potential to lead a significant improvement on the
final query runtime. I will start by briefly introducing recent approaches of fed-
eration and show why SPARQL federation endpoints are mostly in my focus.
Specifically, I will compare state-of-the-art SPARQL query federation engines
and analyze respective optimization approaches. The main federation engines I
will analyze in terms of query optimization are FedX, DARQ and SPLENDID.
As the result I provide concrete examples and conclude which of the engines has
the best performance based on the query execution time as key criterion.

Keywords: Linked Data, Semantic Web, Query Optimization, Query Process-
ing, SPARQL Query, FedX, DARQ, SPLENDID, SPARQL endpoints, Federated
Queries

1 Introduction

The fast transition from the Web of Documents to the Web of Linked Data has increased
the amount of available RDF data sources. Many semantic web applications retrieve in-
terlinked information from diverse domains. Currently, the Linked Open Data1 (LOD)
Cloud contains more than 124 billion triples from 2005 different datasets and this num-
ber is constantly increasing. LOD has a decentralized and linked architecture. To exploit
the diversity of all available data, federated SPARQL queries are needed. SPARQL [1]
is recommended from W3C2 as a RDF query language and protocol. Now, it is possible
to access linked data through a standard interface and query language. However, it is
still difficult to properly integrate data from various data sources.

1 https://stats.lod2.eu/
2 https://www.w3.org/

In this paper, I will shortly introduce the basic federation mechanisms used to get
access to the Linked Data. Two different paradigms are applied for this purpose. Data
Warehousing is one of the most well-known mechanisms because it can provide con-
nection to its data even when the network connection is lacking [2]. On the other hand,
this mechanism doesn’t support up-to-date information, since all the data sources are
stored and physically loaded from a given repository. Consequently, the whole informa-
tion must be downloaded from the servers before it can be used. This process increases
the data workload and saves abundant but useless data. In this particular case, query
processing will require a high response time and might reduce engines’ performance.

My intention is to cover the so called Federated Query Processing [3] and more
specifically focus in SPARQL endpoints implementation. Federated Query Processing
intend to split the query into several parts and federate it against multiple data sources.
In this mechanism, there is no need for data synchronization since the federation is di-
rectly made upon updated sources. The main approaches to federate queries are: Triple
Pattern Fragments, Live Linked Data Streams and SPARQL Endpoint Federation. I have
to emphasize that my analyze will be in terms of optimization and evaluation. I will start
by pointing out the main problems in each approach, evaluating their performance and
finally comparing their main differences.

Next, I will go more deeply analyzing query optimization processes in SPARQL
endpoint implementation, which is one of the most popular approaches of Federated
Query Processing. SPARQL endpoints are supported by most of the Linked Data servers.
On the other hand, many obstacles are produced because of the increasing number of
semantic web applications operating upon this approach. In the latter case, SPARQL
servers have to deal not only with the amount of users, but also must process all the
data for the requested queries.

A SPARQL endpoint is a RESTful web service which permits users to run a SPARQL
query over the data set that the endpoint provides [2]. In this case, multiple reposito-
ries are accessed via a federation layer. Loading of data is not required since an ad
hoc federation can be built by simply adding an additional SPARQL endpoint to the
federation [3]. But, what we are really concerned about is the query processing, which
becomes more complex. The access via SPARQL endpoint is read-only and statistical
information needed for query optimization is not accessible. Furthermore, we incur the
performance penalty by the network communication.

These obstacles and others, I am going to study by introducing three SPARQL fed-
eration engines: FedX, DARQ and SPLENDID. Each of these engines applies different
types of optimization techniques, whose purpose is to increase query performance based
on the execution time as key criterion. Furthermore, I will consider some additional cri-
teria for query evaluation such as: number of source selected, total number of SPARQL
ASK requests used and source selection time [4]. A special focus will be dedicated to
FedX, an engine that outperforms the others in terms of the performance when a cache
is involved. The use of this cache will considerably reduce the source selection and
query execution time. At the end, I will conclude by providing a comparison among the
engines in terms of execution time and optimization techniques.

Structure of this paper. The rest of this paper is structured as follows. Section
2 gives a short introduction to Federated Query Processing and its main approaches.

2

2. FEDERATED QUERY PROCESSING

In section 3, I will cover in more depth SPARQL Endpoint Federation and introduce
the engines I am going to analyze. In section 4, I show optimization techniques used
in each engine and analyze their performance. Also, I will give a comparison among
these engines in terms of query runtime performance as key criterion. In section 5, I
summarize the main features implemented in each engine and discuss possible future
improvements. The last section will be a conclusion of my report where I state my own
opinion.

2 Federated Query Processing

In this chapter, I am going to introduce the main approaches to Federated Query Pro-
cessing. As I mentioned in the introduction, federated queries have been developed to
access, retrieve and combine information from multiple data sources. The main concept
behind federated queries is to split a single query among multiple SPARQL endpoints
and then combine the results. Anyway, they support different design alternatives which
affect the practicality of query processing and the performance. The main approaches
analyzed in this section will be: Triple Pattern Fragments, Live Linked Data Streams
and SPARQL endpoints.

2.1 Triple Pattern Fragments

The main advantage supported by Triple Pattern Fragment approach is the server cost
minimization. This is done by offloading the query execution from the server to the
client side [5]. Consequently, an interface to RDF data is created. This technique bal-
ances the server cost with the availability of the interface. As proposed in [5], a Triple
Pattern Fragment consist of the following components: data formatted as triple patterns,
some metadata, hypermedia controls and a selector used for triple patterns selection.

In this approach, the user sends a triple pattern to the server. Then the server re-
sponds with Triple Pattern Fragments. A browser in the role of a client gets and displays
the results in a listed form (data & metadata) . The server just needs to send the triple
patterns matching to the user request and compress it into a Triple Pattern Fragment.
This reduces the server cost and loads the remaining process into the client side.

Van Herwegen has explained in [6] how the query execution optimization for clients
in Triple Pattern Fragments works. Firstly, the client splits the query into separate triple
patterns and sends them as requests to the Triple Pattern Fragment servers. As intro-
duced in the previous paragraph, the server sends back multiple triple patterns based in
the requested triple pattern. The client retrieves the results from the server and merges
them. The algorithm provided in [6] selects the triple pattern with the fewest results in
order to process it further. After accumulating the results of one pattern, all the bind-
ings will be applied to the other patterns. The algorithm will restart in the new context
of triple patterns.

On the other side, the server should provide a stable availability to the clients. For
this reason, the server is responsible to fetch data from existing SPARQL endpoints and
consequently to provide the Triple Pattern Fragments. Those patterns are created with
high performance, as the endpoint is not busy while the server fetches these data. This

3

approach is very beneficial for federated query processing, because the whole query
execution part is shifted to the client side [5]. When using the Triple Pattern Fragments,
the provider of the data does not need to worry about his server resources or capabilities.
In terms of evaluation, this approach provides higher scalability and lower processing
time compared to SPARQL endpoints.

2.2 Live Linked Data Streams

Live Linked Data Streams is another approach to process federated queries. In contrast
to the other two approaches analyzed in this chapter, Streaming Linked Data is still
a new area of research. In this area, optimizing queries is not the hardest problem yet.
First, accessing the data is difficult, since a continuous stream can not be stored as static
data. Secondly, the data is produced by multiple sensors and should be stored as RDF
streams. After surpassing this two steps, a query language to access and get information
over streams must be invented.

One proposal how to publish Data Streams as Linked Data is given by Barbieri
in [7]. Moreover, a new language(C-SPARQL) responsible for continuous querying is
proposed in [8]. This query language offers the opportunity to query RDF stream data.
In difference to SPARQL, this language computes an interval in which the results must
be updated, since the stream is not static.

To better understand how Live Linked Data Streams might work in the near future,
let’s consider a simple example. FlightRadar3 is a service which provides real-time
streams over plane flights. This application makes use of streaming data and visualizes
them in real time. The purpose of Linked Data Streams is to build similar applications
by using federated queries over RDF sources.

Even though Live Linked Data Streams is a specifically unique approach to deal
with, it offers some advantages. Firstly, it expands the scope of data sources from
where we can access Linked Data. Secondly, this approach guarantees live and up-
to-date information, since the data is live-streamed and recently it can be queried. By
this approach, we can surpass one of the problems presented in abstract: outdated in-
formation. Anyway, this approach is new and still undeveloped, so I am not going to
analyze it further in terms of query optimization.

2.3 SPARQL Endpoint Federation

SPARQL Endpoint Federation is the most distributed approach to federate queries. To-
day most of the servers are running against SPARQL endpoints. Also, the development
of SPARQL endpoints has started much earlier than the distribution of Triple Pattern
Fragments. This makes it more popular and widespread. For this reason, I am going to
analyze this approach more deeply in the next chapters.

A SPARQL endpoint is a RESTful web service which permits users to run a SPARQL
query over the data set that the endpoint provides [2]. The communication is provided
through HTTP. The client sends a SPARQL query to the server using the endpoint inter-
face. The server executes the query and returns results in various formats: CSV, JSON,

3 https://www.flightradar24.com/

4

2. FEDERATED QUERY PROCESSING

HTML or XML. The endpoint is specific for each data set. I am mostly familiar with
BIO2RDF project, which is accessible via http://bio2rdf.org/sparql endpoint.

Version 1.1 of SPARQL federates subqueries to different endpoints by using the
keyword SERVICE4. By using this keyword, users can federate their own queries over
endpoint interface. This technique is practical in the first sight, but sometimes it can
become problematic as explained in [4]. In this case, the whole processing power will
be offloaded in the server side, which has to deal with unlimited number of requests.
Thus optimization of SPARQL queries is unavoidable, since the complexity of requests
might be irrational. Also, servers can stop responding, since the endpoints are available
to everyone and consequently requests can be generated simultaneously.

Example 1. In Listing 1.1, there is given a SPARQL query which asks for all the
metabolites in Wikipedia dataset having InChlKeys from Wikidata. So, the users’ aim is
to retrieve information from two different data sources: Wikipedia and Wikidata. Inside
the query pattern, a connection with the remote SPARQL endpoint is created. In this
specific case, we are running the query under Wikipedia endpoint. On the other side,
we need to send the subquery which identifies the InChlKeys into Wikidata endpoint.
SERVICE keyword is used to send this subquery into the remote SPARQL endpoint
identified by the URI: https://query.wikidata.org/sparql.

Listing 1.1. SPARQL Endpoint Federation via the SERVICE keyword

PREFIX wdt : <h t t p : / / www. w i k i d a t a . o rg / prop / d i r e c t />

SELECT ? m e t a b o l i t e ? w i k i d a t a ? i n c h i k e y
WHERE {

? m e t a b o l i t e a wp : M e t a b o l i t e ;
wp : bdbWik ida ta ? w i k i d a t a .

SERVICE <h t t p s : / / que ry . w i k i d a t a . o rg / s p a r q l > {
? w i k i d a t a wdt : P235 ? i n c h i k e y .

}
}

Another possible way to query against multiple SPARQL endpoints is by execut-
ing a Data Source Selection. In this technique, the usage of SERVICE keyword is not
needed, but the user must determine the data source for the given query. In the next
chapter, I am going to introduce some engines applying this specific approach. Later, I
will focus mostly in optimization techniques used in each engine and study their effects
upon the overall performance.

In Figure 1, there is a visualized comparison of required processing(filled bars) and
data transfers(dotted lines) between SPARQL endpoints and Linked Data Fragments.
SPARQL endpoints perform all the processing on the server, while Linked Data Frag-
ment servers support only simple requests. This leads to a fast query execution with
low bandwidth and an overloaded server in SPARQL endpoints approach. Linked Data
Fragment server can load higher loads, while clients perform querying. Because the
processing part is offloaded to the client side, the caching of Fragments can be per-
formed. Compared to Live Linked Data Streams, SPARQL endpoints do not provide

4 https://www.w3.org/TR/sparql11-service-description/

5

http://bio2rdf.org/sparql

Fig. 1. SPARQL Endpoint vs Triple Pattern Fragment [5]

live data, since the data is stored in the server. For a live reference to the world, Linked
Data Streams is the best approach among all of them.

3 SPARQL Endpoint Engines

In this chapter, I am going to further analyze SPARQL Endpoint Federation by intro-
ducing three federation engines built upon this approach. In all these engines you can
find an unique element: a federation layer as shown in Figure 2. This layer is used to ac-
cess multiple data sets. More specifically, it computes an execution plan for the queries,
fetches and combines the results of all requested endpoints.

Fig. 2. Federation over multiple SPARQL endpoints[3]

By using SPARQL endpoints, there is no need to download the data in advance.
Users have to query specific information only against the relevant SPARQL endpoint.
As stated in the previous paragraph, multiple repositories are accessed via a federation

6

3. SPARQL ENDPOINT ENGINES

layer. Still, the access is completed by SPARQL endpoints of data providers. Loading
in federated sources can be done by adding an ad hoc federation, which on the other
side can be built by simply adding an additional SPARQL endpoint to the federation[3].

In my interest stands the query processing, which in this case becomes more diffi-
cult. The access via a SPARQL endpoint is restricted to read-only, although there are
some proposals for a SPARQL-Update approach. Also, statistical information needed
for query optimization is not accessible. On the other hand, servers in this approach are
usually overloaded and sometimes they stop due to arbitrary complexity of requests. All
these reasons create a necessity to optimize SPARQL queries. In the next sub-chapters,
I will deal with the architecture design and main components in each of the following
engines: FedX, DARQ and SPLENDID. Query processing and optimization techniques
applied in each engine will be explained in chapter 4.

3.1 FedX

FedX is implemented in Java and extends the Sesame5 framework with a federation
layer[11]. FedX is a framework that enables querying on “heterogeneous, virtually in-
tegrated Linked Data Sources”[10].

FedX can be downloaded from the website6. The SPARQL endpoint is directly ac-
cessed via the terminal. This is done by introducing a Data Config file, which consist of
URIs for the SPARQL endpoints. The user must know the data source’ URI in order to
configure this connection. The Data Config is extensible, so the user can add new end-
points manually. With several URIs stored in Config File, FedX can federate queries
against multiple data sources.

Fig. 3. FedX System Overview[11]

5 https://rdf4j.org/
6 https://www.fluidops.com/en/company/training/

7

In Figure 3, there is a visualized architecture of an application built on top of FedX.
The application layer is necessary for any kind of interaction with the federation. This
layer provides the frontend to the query processing engine. The second layer provides
the frontend to the query processing engine and is composed of Sesame framework.
This layer includes infrastructure for the following processes: query parsing, I/O com-
ponents and the API for the client. The third layer, known as federation layer, is imple-
mented as extension of Sesame. Besides basic features described above, FedX adds
through this layer additional functionality for endpoint communication, data source
management and optimization for distributed query processing[10][11]. Data Sources
can be added to federation layer through repository mediator as visualized below.

3.2 DARQ

Distributed ARQ (DARQ) is a system to distribute SPARQL queries among multiple
data sources[3][9]. DARQ gives the user an impression to query one single RDF graph
despite the real data is being distributed in different sources. It was developed as an
extension of ARQ7 query engine[12]. DARQ executes a query against endpoints that
support the SPARQL protocol8. The query federation process is hidden from the user.

A service description language enables DARQ to decompose the query into sev-
eral sub-queries. Each of these sub-queries can be answered by an individual service.
Service Descriptions contain needed information about the data sources, which will be
used from the federated queries. The service description also inputs statistical infor-
mation which is not a feature of other SPARQL endpoint engines. Defining statistical
information about the data available can help the query optimizer to find a cost-effective
query execution plan. Service Descriptions are represented in RDF. The use of Service
Description is visualized in Figure 4.

Fig. 4. DARQ-integration architecture[9]

7 http://jena.apache.org/documentation/query/index.html
8 https://www.w3.org/TR/sparql11-protocol/

8

3. SPARQL ENDPOINT ENGINES

Service Descriptions describe data in form of capabilities[4]. The definition of ca-
pabilities is based on predicates. Capabilities define what kind of triple patterns can
be answered by the data source. Using this information, it is possible to say whether
a query can be executed against the endpoint of this data set or not. Moreover, the
Service Description has the the ability to limit the query. This is done through some
access patterns which are included in the query. These access patterns are defined by
requiredBindings property inside the query. DARQ federates a query against a data set
if it satisfies all these requirements. Otherwise no result will be returned.

3.3 SPLENDID

SPLENDID is an engine, which federates queries based on voiD descriptions[15]. VOID
(Vocabulary of Interlinked Datasets) incorporates statistical information and contains
information about the URI of the SPARQL endpoint, triples and specific predicates in
the data set. Most of existing federation engines assume an arbitrary level of details for
statistics-based source selection, query optimization and query execution. On the con-
trary, SPLENDID relies only on the VOID statistics[13]. These statistics are created via
a generator9.

SPLENDID uses voiD description to determine which data set is relevant for a given
triple pattern in the query. To achieve that, SPLENDID makes use of an a-priori knowl-
edge about the data set. Since most endpoints offer a low availability, voiD descriptions
are a better approach to get the required information.

As shown in Figure 5, SPLENDID consist of three main components:
a) Index Manager interacts with voiD descriptions. All the necessary information is
saved for each endpoint.
b) Query Optimizer optimizes the query before it gets executed. Moreover, the relevant
data sets for the triple patterns and the execution plan are determined.
c) Query Executor processes the data, retrieves and joins the results for different triple
patterns.

Fig. 5. Architecture of SPLENDID Federator[13]

9 http://void.rkbexplorer.com/sparql

9

4 SPARQL Query Optimization

Optimizing SPARQL queries in federated setting with distributed data sources is cru-
cial. It is important to guarantee a fast execution of the individual requests and to min-
imize the number of intermediate requests. There are two basic strategies to evaluate a
SPARQL query in federated linked data: 1) all triple patterns are completely evaluated
against every endpoint in federation and the query result is constructed locally in the
server, and 2) an engine evaluates the query iteratively pattern by pattern, by evaluating
the query in a nested loop join fashion. Below, I will cover these strategies and focus
especially on the second one, based on three main engines: FedX, DARQ and SPLEN-
DID. What optimization techniques are used specifically in each engine and which is
the most effective one? Moreover, a comparison among these engines and an evaluation
upon their performance is given in the last part.

4.1 Query Optimization in FedX

FedX [10] is an index-free SPARQL query federation system. The source selection is
based on SPARQL ASK queries and a cache. This cache is used to save the recent
SPARQL ASK operations for data source selection. The use of this cache significantly
reduces the source selection and query execution time [4]. FedX implies the nested
loop join fashion strategy for optimizing the queries. The problem with this approach
is the number of remote requests caused for each join step. The intention of FedX is
to minimize the number of join steps by grouping triple patterns and by reducing the
number of sent requests [10].

According to [11], FedX processes a query in the following order:

1. Statement sources: All statements of SPARQL queries are examined for their rele-
vant data sources to avoid unnecessary communication.
2. Filter pushing: SPARQL filter expressions are pushed down for early evaluation.
3. Parallel processing: Multithreaded execution of join and union computations.
4. Join order: Joins are important because they significantly influence the performance
and thus the overall query runtime. FedX uses various heuristics to calculate the cost of
each join and then executes them in ascending order of cost.
5. Bound joins: Joins are computed in a block nested loop fashion to reduce the number
of requests and the overall time.
6. Groupings: Statement with relevant data source are executed in a single SPARQL
query to push joins to the corresponding endpoint.

Figure 6 visualizes the FedX query processing model. First, the SPARQL query
is parsed and transformed into an internal representation. Then, the source selection
process takes place. The relevant sources are determined from the configured federation
members using SPARQL ASK requests in conjunction with a cache. Triple patterns of
a SPARQL query must evaluate only those data sources that are relevant to the results.
In order to find relevant sources, FedX sends SPARQL ASK queries for each triple
pattern to the federation members [4]. Based on the results, each pattern in the query is
annotated with its relevant sources. Moreover, FedX uses a cache to remember whether

10

4. SPARQL QUERY OPTIMIZATION

source S is relevant or not for a triple pattern. This will minimize the number of remote
ASK requests.

Fig. 6. Federated Query Processing Model[10]

The next optimization steps are join order optimization and forming of exclusive
groups. These techniques have an important impact on the final execution plan. First,
it is important to determine a suitable join order on the results of the different triple
patterns. Determination of join order affects directly the computation time of the query.
This is done by heuristics-based cost estimation [22]. A variation of algorithm pre-
sented in [22] is introduced in [10]. This algorithm implies an iterative approach to
determine the argument with the lowest cost for remaining items and appends it to the
result list.

Moreover, FedX extends this optimization technique by introducing exclusive groups.
Exclusive Groups play a central role in FedX optimizer. Local execution of nested loop
joins at the server causes a high cost in federated query processing. The role of Exclu-
sive Groups is to minimize such a cost. An exclusive group of a data source is defined
as a set of triple patterns, which only have this data source assigned [11][12]. Such a
group is considered as one argument of the join operation and is preferred in the selec-
tion of the join order. Using the exclusive groups, all included triple patterns are merged
in one query and then executed against the relevant endpoint. Without the application
of such groups, each of the triple patterns could be distributed over the join order and
consequently would increase the number of required requests. In paper [10], there is a
concrete running example where exclusive groups are used.

After determining the join order, the query execution takes place. The join order
shows the execution plan, meaning the order that different triples are executed against
their relevant data sources. FedX uses an extended approach of Block Nested Loop
Join [11]. According to this approach, FedX generates the result of one pattern and
then matches the corresponding bindings to the second pattern.

Computing the joins in a block nested loop approach reduces the number of requests
by a factor equivalent to the size of a block. The idea of this optimization is to group
a set of mappings in a single sub-query using SPARQL UNION constructs. This sub-
query is later sent to the relevant data sources in a single remote request. This technique
is called Bound Join [10].

11

In addition, FedX provides even parallelization infrastructure [23], which uses multi-
threading techniques to execute the joins, i.e, bound joins and union operators. This is
possible because query processing in federated systems is highly parallelizable, mean-
ing that different subqueries can be executed concurrently. Also, FedX has employed
a pipelining approach which processes the intermediate results in the next operator as
soon as they are ready. FedX and LHD are the only engines implementing paralleliza-
tion as an optimizing technique.

4.2 Query Optimization in DARQ

DARQ [9] query engine can work as a SPARQL endpoint itself. Data sources are de-
scribed by service descriptions as mentioned in the previous chapter. The query engine
uses such information for query planning and optimization. According to [9], DARQ
processes a query in the following steps:

1. Parse the query into a tree model of SPARQL.
2. Query Planning. The engine decomposes the query. Multiple sub-queries are built
according to the information in the service descriptions.
3. Optimization. In this phase, the optimizer uses the sub-queries and constructs a op-
timized query execution plan.
4. Query Execution. The sub-queries are federated to different endpoints and the re-
sults are merged.

I have briefly explained how the first phase works while introducing DARQ engine.
In the second phase, the information provided in the Service Description gets relevant.
The purpose is to determine which sub-query gets distributed to a given data source.
This is done by Source Selection process. An algorithm for finding the relevant data
sources for a query is given in [9]. DARQ currently supports only queries with bound
predicates, since the matching is based on predicates. The results retrieved from the
Source Selection are used to build sub-queries that can be answered by the data sources.

DARQ engine provides some optimization techniques in order to improve the per-
formance while federating queries over multiple data sets. To build a cost-effective
query execution plan, the query optimizer uses logical and physical query optimization
[12]. The aim of query processing is data minimization. Minimizing the federated data
reduces the query processing time and improves the response time [16].

The logical optimization uses the rules given in [17] to rewrite the original query.
This technique uses equalities of query expression to convert a logical query into an
equivalent query plan that is executed faster. The original query is rewritten before
query planning so the basic graph patterns can be merged. Variables will be replaced by
constants from filter expressions.

Example 2. To better explain rewriting rules using FILTER expression, I am consid-
ering an example from BIO2RDF project. Listing 1.2 shows the original query submit-
ted by the user. The user asks for a chemical named 2,6-xylidine, which is identified by
the ontology mesh: C007766. This chemical is stored in Comparative Toxicogenomics
Database. Using the dataset vocabulary, the user wants to know the functions of this

12

4. SPARQL QUERY OPTIMIZATION

chemical. So, the query asks for the functions that the 2,6-xylidine has in Comparative
Toxicogenomics dataset.

Listing 1.2. Query before rewriting

PREFIX c t d v o c a b :< h t t p : / / b i o 2 r d f . o rg / c t d v o c a b u l a r y :>
PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>
PREFIX mesh : <h t t p : / / b i o 2 r d f . o rg / mesh:>

SELECT d i s t i n c t ? c h e m i c a l (s t r (? l a b e l) a s ? Label)
WHERE {

?chemID c t d v o c a b : has−f u n c t i o n ? g o F u n c t i o n ;
r d f s : l a b e l ? c h e m i c a l .

FILTER (? chemID = mesh : C007766)
? g o F u n c t i o n r d f s : l a b e l ? l a b e l .
}

In Listing 1.2, there are two separate Basic Graph Patterns, each with one triple
pattern. In Listing 1.3, there is given the same query, which is rewritten. In this case,
the two patterns are merged. The variables that occur in filters with an equal oper-
ator are replaced. In this specific case, ?chemID is replaced by the chemical URI
(http://bio2rdf.org/mesh:C007766).

Listing 1.3. Query after rewriting

PREFIX c t d v o c a b :< h t t p : / / b i o 2 r d f . o rg / c t d v o c a b u l a r y :>
PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>

SELECT d i s t i n c t ? c h e m i c a l (s t r (? l a b e l) a s ? Label)
WHERE {
<h t t p : / / b i o 2 r d f . org / mesh : C007766>

c t d v o c a b : has−f u n c t i o n ? g o F u n c t i o n ;
r d f s : l a b e l ? c h e m i c a l .

? g o F u n c t i o n r d f s : l a b e l ? l a b e l .
}

Secondly, it is possible to move value constraints into the sub-queries to reduce the
size of intermediate results[9]. Filters that have variables from more than one sub-query
and that can not be splitted by a set of rules are applied locally in DARQ engine.

Example 3. In Listing 1.4, there is a query with a conjunctive filter on two attributes.
I am considering a similar example as given previously. In this case, the user asks for
xylidine chemical which has a heme binding function. Presumably, two triple patterns
are split in two sub-queries for two different services. In this specific case, a single filter
can not be moved into the sub-queries since one of the variables would be unbound.
For this reason, the conjunction can be split into two filters: FILTER (regex (?chemical,
”xylidine”) and FILTER regex (str(?label), ”heme binding”). These two filters can later
be moved into the sub-queries. In case that the query optimizer is not able to split a

13

filter using some sets of rewriting rules, a local filter will be applied. Such filtering will
happen locally, inside DARQ query engine, as soon as all variables are bound.

Listing 1.4. Example SPARQL query

PREFIX c t d v o c a b :< h t t p : / / b i o 2 r d f . o rg / c t d v o c a b u l a r y :>
PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>

SELECT d i s t i n c t ? c h e m i c a l (s t r (? l a b e l) a s ? Label)
WHERE {

?chemID c t d v o c a b : has−f u n c t i o n ? g o F u n c t i o n ;
r d f s : l a b e l ? c h e m i c a l .

? g o F u n c t i o n r d f s : l a b e l ? l a b e l .
FILTER (r e g e x (? chemica l , ” x y l i d i n e ”) &&

r e g e x (s t r (? l a b e l) , ”heme b i n d i n g ”))
}

Physical Optimization focuses on a cost-based query optimization technique [12]. Net-
work latency and bandwidth have the highest influence on query execution time, when
we consider federated queries. Consequently, our goal is to reduce the transfer cost
by reducing the amount of transferred data and the number of transmissions. This will
considerably improve the query execution time.

Physical query optimization has the purpose to find the best query execution plan
among all possible plans and uses a cost model to compare different plans [9]. This cost
model is designed based on some statistical information in Service Descriptions [3].
The number of triples with a predicate shown in capability property of an endpoint is
used to predict the size of a result for a given query [3].

Considering limitations in access patterns, we use iterative dynamic programming
for optimization. Two join implementations are support in this approach:

- nested-loop join For every binding in the outer relation, we check the inner rela-
tion and add the bindings that match the join condition to the result set.
- bind join Introduced in [14]. It is a version of nested loop join, where intermediate re-
sults from the outer relation are passed to the inner to be used as filter. DARQ sends out
the sub-query for the inner relation multiple times with the join variables bound[9][14].
We use such a binding join for data sources with limitations on access patterns. This
approach reduces considerably the transfer costs if the unbound query returns a large
result set.

4.3 Query Optimization in SPLENDID

SPLENDID [19] makes use of VOID descriptions to determine which data source is
relevant for a specific triple pattern in the query. As mentioned in chapter 3, the main
components of SPLENDID are Index Manager, Query Optimizer and Query Executor
(see Figure 5). Before executing the main components, the query in SPLENDID gets
converted into an abstract syntax tree[14]. Query Optimizer can handle such a query
better.

14

4. SPARQL QUERY OPTIMIZATION

Index Manager accumulates the statistics of VOID descriptions in a local index.
General information such as triple count, the number of distinct predicates, subjects,
and objects are stored as attributes for every SPARQL endpoint [19].

Query Optimizer optimizes the query before it gets executed. The SPLENDID
query optimizer focuses on transforming the given query into a semantically equiva-
lent query. This provides a lower cost in terms of processing time and communication
overhead. Three steps are applied during the optimization: query rewriting, data source
selection and cost-based join order optimization. The full algorithm is deeply explained
in [13]. First, the query rewriting optimizes the logical tree structure of the query. As
stated in [19], complex filter expressions are split and relocated close to operators which
produce bindings for the filtered variables.

The source selection is done by using structures Ip: {(p, {di, ci})} and It: {(t, {di,
ci})}. These structures are inverted indexes data structures10, which are managed by the
Index Manager. Ip includes the data set d and the triple count c for each predicate p.
The voiD description of a data set d contains such information. Multiple data sets can
have the same predicate, hence the structure will contain more tuples. This is done in It
for the types like rdf:type.

In this paragraph, I will explain how the optimization algorithm works as it is stated
in [13]. Each triple pattern with a bounded predicate can be mapped to the correspond-
ing data set in Ip. Both data structures contain information only for bounded predicates.
Consequently, patterns with no bounded predicate need to be mapped to all known data
sources. SPLENDID added a new process to minimize the relevant data sources for a
pattern. If a pattern has only one bounded predicate, the data set will return a result.
In this case, SPLENDID uses ASK queries to check if the pattern gets results from
the endpoint[19]. If it does not, the data set gets pruned from the corresponding data
sets[13]. To reduce the amount of requests, patterns with common data sources are sent
in a single query. The dynamic programming approach[20] is applied to determine the
query execution plan (join order) for the Query Executor.

Join Order Optimization is a traditional optimization strategy which is used in rela-
tional databases, but can also be used in SPARQL basic graph patterns. Using the sub
queries created by the source selection, all possible query execution plans are iterated,
while the unwanted plans are pruned based on the overall cost estimation[19]. Query
execution plans might have different tree structures, but the best choice for SPARQL
queries are bushy trees[21].

Cost Function is used to compare two equivalent execution plans with different join
orders and different join operators. Two formulas for calculating the transfer cost for
hash join and bind join are given in [19]. The network communication has the highest
influence in the overall cost. For this reason, the cost model basically includes the cost
for sending queries to a SPARQL endpoint and the cost for receiving the results.

The execution plan with a minimal cost is passed for processing to the Query Ex-
ecutor. As provided in [19], SPLENDID uses two different join execution strategies:

1) “use the results of the first join argument to substitute unbound variables in the
second join argument with a repeated evaluation for every binding.”

10 https://www.quora.com/Information-Retrieval-What-is-inverted-index

15

2) “request result tuples for the join arguments in parallel from the SPARQL end-
points to join them locally.”

In the first approach, the bind joins algorithm SPLENDIDB is used to join the
results[14]. It is suited to reduce the network overhead if the selectivity of the join
variable is high and the result set is large. The second approach executes the two ar-
guments in parallel and then joins them locally by using the hash join algorithm[13]
SPLENDIDH. It is very good for retrieving small result sets that can be joined locally.

4.4 Evaluation

In this subsection, I will briefly make an evaluation review based on four metrics: 1) to-
tal triple pattern-wise sources selected, 2) total number of SPARQL ASK requests used
during source selection, 3) source selection time, and 4) query execution time. In paper
[4], you can find a detailed overview how these criteria affect the overall performance.
My aim is to make a comparison among the engines explained above and show how
they respond to each criteria.

In Table 1, there are given the most important characteristics of each engine ex-
plained previously. As a result of these observations, I can state that DARQ and SPLEN-
DID consist on many similarities. They use dynamic programming for finding the best
execution plan and a source selection approach without preprocessing. However the pre-
processed information is retrieved from different components, respectively Service De-
scriptions and Void Descriptions. On the contrary, FedX provides an index-free source
selection approach by applying a user generated Data Config file to determine the rel-
evant data sources. FedX uses a heuristic-based cost estimation instead of dynamic
programming. All the engines apply grouping techniques such as Exclusive Groups to
optimize the query execution process. Using these features, I will explain how each
engine responds to the metrics I am interested in.

Table 1. Comparison among the engines

FedX DARQ SPLENDID

Source Selection
Data Config + ASK

queries + Cache
Service Descriptions

VOID Descriptions +
ASK queries

Source Selection
approach

Index-free Index-only Index-based

Preprocessing No Yes Yes
Query execution

plan
Heuristic-based cost

estimation
Dynamic

programming
Dynamic

programming
Query rewriting No Yes Yes

Join order
optimization

Nested-loop + Bind
join

Nested-loop + Bind
join

Hash-loop + Bind
join

My scope of evaluation stands only on three engines: FedX, DARQ and SPLEN-
DID. Considering the triple pattern-wise selected sources, FedX and SPLENDID over-
pass DARQ in terms of source selection accuracy. This happens because both FedX

16

5. SUMMARY AND FUTURE WORK

and SPLENDID make use of ASK queries when any of subject or object is bound in a
triple pattern. On the other side, DARQ is an index-only approach which does not use
SPARQL ASK queries when any of the subject or object is bound. Thus, DARQ tends
to overestimate the triple pattern sources per individual triple pattern.

In terms of SPARQL ASK requests, DARQ as an index-only approach can only
make use of its index to perform the source selection. Therefore, DARQ does not need
any ASK request to process queries. FedX on the other side, uses only ASK requests
along with a cache to perform source selection. If FedX uses a full cached approach,
the complete source selection is performed by using cache entries. Consequently, the
use of a cache improves significantly the source selection time and the overall query
execution time. SPLENDID is the most efficient engine if we consider the SPARQL
ASK requests consumed during source selection. It overpasses FedX, since the latter
one is closely dependent by the use of the cache, which is not always secured.

The number of SPARQL ASK requests grows and increases the overall source se-
lection time. Thus, we can expect a trade-off between the source selection process and
the time required to perform it. DARQ needs less time compared to the other engines,
since it does not send any SPARQL ASK queries during the source selection process.
The runtime in index-only approaches will be minimal because the index is usually
pre-loaded in memory before the query execution happens. FedX uses a cache to store
the results of the recent SPARQL ASK operations. This reduces the source selection
time in FedX, but makes it highly dependent on the cache. In SPLENDID, the source
selection time is high, since it overestimates the number of triple pattern sources.

Based on the criteria mentioned so far, FedX outperforms the others in terms of
query execution time. FedX uses parallel execution of SPARQL ASK queries and caching
to perform the source selection process. This parallelization of processes is very time-
efficient. Other factors such as the join type, join order selection and the buffer sizes
can affect the query execution time. But the most influential one is the level of source
selection caching which is used only in FedX.

5 Summary and Future Work

In this section, I summarize the main points discussed in the report and state some possi-
ble future improvements. Many mechanisms accessing Linked Data are invented lately.
I basically covered the so called Federated Query Processing and studied the main ap-
proaches used to federate queries. SPARQL Endpoint Federation is the most popular
approach for accessing federated queries. I introduced the main obstacles and showed
why query optimization is crucial to overpass such problems. My intention was focused
on three well-known SPARQL Endpoint engines: FedX, DARQ and SPLENDID. The
purpose of this paper was to explain the main optimization techniques implied in each
engine. I tried to analyze the performance of each engine and compare them in terms of
query execution time as key criterion. In the next paragraphs, I shortly recapitulate the
main features of each engine and discuss possible future improvements.

FedX is a practical solution for querying multiple distributed Linked Data sources.
Various optimization techniques are implemented by this engine in order to reduce the
overall query runtime. Bound joins combined with grouping and source selection in-

17

crease the performance. Compared to the other state-of-the-art systems, FedX increases
the query performance by minimizing the number of intermediate requests. FedX is
compatible with SPARQL 1.0 query language, allowing clients to integrate SPARQL
endpoints into a federation without any preprocessing.

By the integration of SPARQL 1.1, further improvements are expected. For exam-
ple, federation extensions by using the SERVICE operator will allow the engine to
directly specify the data sources. Also, statistics may influence the performance dras-
tically. FedX has not yet implemented any local statistics. Inspired by the SPLENDID
experience, FedX might incorporate remote statistics using voiD descriptions [15] in
the future.

DARQ is compatible to any SPARQL endpoint. Using Service Descriptions pro-
vides a way to dynamically add and remove endpoints to the query engine in a trans-
parent way. I introduced basic query optimization for SPARQL, which help reducing
the execution costs. The techniques explained above can drastically improve query per-
formance and allow distributed answering of SPARQL queries over multiple sources
in a reasonable time. The optimization algorithm relies on small amount of statistical
information. Some future improvements can be done in mapping and vocabulary trans-
lation. This is important because multiple data sources are using different vocabularies
and non-unique representation. Further improvements are also possible as explained in
[14][18].

SPLENDID can achieve a good query performance compared to the other state-
of-the-art federation implementations. Data source selection and query optimization is
based on basic statistical information which is obtained from VOID descriptions. Hash
join and bind join can reduce the processing time for certain types of queries.

Anyway, this approach can be further improved. It is possible to extend VOID de-
scriptions with more detailed statistics in order to better query the execution plans.
Moreover, the query execution can be optimized by using the UNION operator, an op-
timization technique used in FedX[13]. Also, the adoption of SPARQL 1.1 federation
extension will improve the query execution efficiency.

6 Conclusion

To sum up, I will give my personal opinion about the topic. Also, I will conclude by
suggesting the most important factors that must be considered while building the next
federation engines.

Many approaches to federate Linked Data are developed lately. In my opinion,
Triple Pattern Fragments must be considered as an innovative approach, since it allevi-
ates the server from the whole processing effort. On the other side, SPARQL endpoints
require additionally processing power per each new client requesting data from the end-
point. By using Triple Pattern Fragments, the client will take care of its own processing.
Live Linked Data Streams are a unique approach to federate streaming data over vari-
ous data sets. Personally, I think that this approach can positively overpass the problem
of outdated information.

Considering the federation engines, I think that a smart source selection, in terms
of triple pattern sources and execution time is the key element to be considered while

18

6. CONCLUSION

building next SPARQL Endpoint federation engines. Inspired by FedX, I can sum up
that a combination of caching with ASK queries to perform the source selection will
improve the overall runtime of SPARQL query processing system. Other factors such
as the join type, join order selection and the buffer sizes can affect the query execution
time and must be considered too.

19

References

1. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommenda-
tion (January 2008) http://www.w3.org/TR/rdf-sparql-query/.

2. Hartig O.: An Overview on Execution Strategies for Linked Data Queries (2013)
3. Haase, P., Math, T., Ziller, M.: An Evaluation of Approaches to Federated Query Processing

over Linked Data
4. Saleem, M., Ngonga Ngomo, A., Khan, Y., Hasnain, A., Hauswirth M., Ermilov, I.: A Fine-

Grained Evaluation of SPARQL Endpoint Federation Systems
5. Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de Walle, R.:

Web-Scale Querying through Linked Data Fragments
6. Van Herwegen, J., Vborgh, R., Mannens, E., Van de Walle R.: Query Execution Optimization

for Clients of Triple Pattern Fragments
7. F. Barbieri, D., Della Valle, E.: A proposal for Publishing Data Streams as Linked Data
8. Francesco Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:

SPARQL for Continuous Querying
9. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL
10. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization Tech-

niques for Federated Query Processing on Linked Data
11. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: A Federation Layer for

Distributed Query Processing on Linked Open Data
12. Buil-Aranda, C.: Federated Query Processing for the Semantic Web
13. Grlitz, O., Staab, S.: SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descrip-

tions
14. M. Haas, L., Kossmann, D., L. Wimmers, E., Yang, J.: Optimizing Queries across Diverse

Data Sources. In: 23rd Int. Conference on Very Large Data Bases (VLDB), San Francisco,
CA, USA, Morgan Kaufmann Publishers Inc. (1997)

15. L. Alexander, R. Cyganiak, M. Hausenblas, J. Zhao. Describing Linked Datasets - On the
Design and Usage of voiD, the “Vocabulary of Interlinked Datasets”. In Proceedings of the
Linked data on the Web Workshop, Madrid, Spain, 2009.

16. Saleem, M., Ngonga Ngomo, A., Xavier Parreira, J., F. Deus, H., Hauswirth M.: DAW:
Duplicate-Aware Federated Query Processing over the Web of Data

17. Perez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: 4th Interna-
tional Semantic Web Conference (ISWC), Athens, GA, USA (November 2006) 30-43

18. Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32(4)
(2000) 422-469

19. Gorlitz, O., Staab, S.: SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descrip-
tions

20. P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path Selection in a
Relational Database Management System. in Proceedings of the 13th International Confer-
ence on Management of Data, pages23-24, Boston, MA, USA, 1979

21. M.E. Vidal, E. Ruckhaus, T. Lampo, A. Martinez, J. Sierra, and A. Pollers. Efficiently Joining
Group Patterns in SPARQL Queries. In 7th Extended Semantic Web Conference, pages 228-
242, Heraklion, Crete, Greece, 2010. Springer.

22. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL Basic Graph
Pattern Optimization Using Selectivity Estimation

23. Wang, X., Tiropanis, T., C. Davis, H.: LHD: Optimizing Linked Data Query Processing
Using Parallelisation

20

	SPARQL Query Optimization for Federated Linked Data

