
Solving most cost-effective loan problem

Rodion “rodde” Efremov

March 6, 2018

1 Introduction

In the most cost-effective loan problem, we are given a directed graph of
actors where each actor may lend some amount of resources it possesses to
its child nodes. In case an actor needs more than his immediate parents can
lend, the parents might need to lend from their parents, adjust the interest
rate to cover their own expenses, and pass the funds to the original lending
actor.

Formally, we are given a directed graph G = (V,A), where V is the set
of actors, and A ⊆ V 2 is the set of directed arcs. By V (G) we denote the
actor set of G, and likewise, by A(G) we denote the arc set of G. Given an
arc (u, v) ∈ A, we call u a parent of v and v a child of u. Existence of such
an arc indicates that u may lend some or all of its resources to v. Along the
graph, we are given a potential function P : V → [0,∞) = R≥0 that maps
each actor in the graph to the (non-negative) equity that that very node has
at its disposal. Finally, we are given an interest rate function I : A → R≥0

that maps each arc (u, v) ∈ A to the interest rate the actor u can offer v
when v decides to lend from u.

Apart from the target data structure, in a problem instance, we are given
an actor a ∈ V that applies for a loan, a required potential P ∈ R≥0, and
a maximum tolerable interest rate i ∈ R≥0. Our aim, then, is to compute
a loan (which may involve more than one lending actor) with minimized
interest rate. Note that if actors would simply “pass” the potential from
their parents to the lending actor, the problem would become trivial.

1

2 Interest rate model

Throughout the paper, we assume a simple interest rate model. The accu-
mulated balance at time t since the time point at which the loan was issued,
with initial principal A and interest rate r is given by

A(1 + r)t.

If we have in the graph, for instance, a directed (acyclic) path (u, v, z) with
ru,v being the interest rate of (u, v), and rv,z being the interest rate of (v, z),
the interest rate equation becomes

A(1 + ru,v)
t(1 + rv,z)

t = A
[
(1 + ru,v)(1 + rv,z)

]t
= A(1 +R)t.

Above, R is the combined interest rate. Dividing the both sides by A and
taking the t-th root, we obtain

(1 + ru,v)(1 + rv,z) = 1 +R

R + 1 = 1 + ru,v + rv,z + ru,vrv,z

R = ru,v + rv,z + ru,vrv,z.

In general, we write r1 + r2 + r1r2 = C(r1, r2).
Since we may deal with entire “loan chains”, we need to define the concept

of effective interest rate. Effective interest rate is given by

I(u, v) =

0 if u = v,

min
z∈Children(G,u)

C
(
I(u, z), I(z, v)

)
otherwise,

where Children(G, z) is the set of child nodes of z, or, formally, {u : (z, u) ∈
A(G)}.

3 Problem statement

Given a problem instance (G, a,P, I, P, i), we wish to compute two additional
functions π and d. π : V → R≥0 is called a solution potential function and
it maps each actor u to potential π(u) u can lend, and d : V → V is called
a direction function and it maps each actor u to some of its children d(u)
to which π(u) worth potential is being lent. What comes to constraints, no

2

actor u lending some of its potential shall have I(u, a) > i, since a cannot
afford effective interest rates above i. Also, if it is not possible due to the
first constraint to obtain a loan worth P , the loan should be maximized from
below as close to P as possible.

In order to implement the first constraint, we need to define the set of
admissible solution potential functions:

πI,a,i,G = {π : V (G)→ R≥0 | π(u) = 0 if I(u, a) > i}.

An admissible solution potential function π is said to be valid if it also
satisfies ∑

u∈V

π(u) ∈ [0, P],

and we denote that fact by π ∈ V.
Now, we can state the objective formally:

π = arg min
π′∈V

[
P −

∑
u∈V

π′(u)

]
,

and
d(u) = arg min

z∈Children(G,u)

C
(
I(u, z), I(z, a)

)
.

4 Solution algorithm

Since the effective interest rate does not decrease with adding more directed
arcs, we must have that for any actor a ∈ V the most cost-efficient lenders
are its immediate parents. This observation implies that we basically wish
to compute a directed “minimum spanning tree” in which each other node
in the tree has a single unique directed path to a. In the very beginning,
the tree is trivial and consists of only a. Then a most cost-effective parent
u1 is selected and the arc (u1, a) is introduced. Then u2 is selected. It must
not belong to {a, u1} while have the lowest possible effective interest rate
among all nodes in V \ {a, u1}. This procedure continues until a desired
potential P is collected or until there is no more nodes left with affordable
effective interest rates. Below, Priority-Queue-Insert(Q, 〈a, b, c〉) stores
the triple 〈a, b, c〉 and uses c as the priority key.

3

Algorithm 1: Most-Cost-Effective-Loans(G, a,P, I, P, i)

1 let Q be an empty priority queue
2 let π be an empty solution potential function
3 let d be an empty direction function
4 C ← ∅
5 Pcurrent ← 0
6 for u ∈ V (G) do
7 π(u)← 0
8 d(u)← nil

9 for u ∈ Parents(G, a) do
10 if I(u, a) ≤ i then
11 Priority-Queue-Insert(Q, 〈u, a,I(u, a)〉)

12 while |Q| > 0 and Pcurrent < P do
13 〈u, v, icurrent〉 ← Priority-Queue-Extract-Minimum(Q)
14 P∆ ← min(P − Pcurrent,P(u))
15 Pcurrent ← Pcurrent + P∆

16 π(u)← P∆

17 d(u)← v
18 C ← C ∪ {u}
19 for z ∈ Parents(G, u) do
20 if z 6∈ C then
21 inext ← C(icurrent, I(z, u))
22 if inext ≤ i then
23 Priority-Queue-Insert(Q, 〈z, u, inext〉)

24 return (π, d)

4

