Solutions to the Damped Oscillator Equation

September 2019

The Damped Oscillator Equation

$$
m \frac{d^{2} x}{d t^{2}}+\beta \frac{d x}{d t}+k x=0
$$

is a second-order differential equation that can easily be derived using Newton's Second Law of Motions applied to a spring, assuming a frictional force $f_{k}=-\beta v$, where v is the speed of the mass. Solving this equation, however, is considerably more difficult, but not that hard if proper techniques are used.

1 Over-damped Oscillators

An over-damped oscillator is an oscillator that faces a frictional force so great that the oscillator just returns to its equilibrium position. Looking at the equation

$$
m \frac{d^{2} x}{d t^{2}}+\beta \frac{d x}{d t}+k x=0
$$

It can be proved that if y_{1} and y_{2} are two linearly independent solutions, meaning that one cannot be multiplied by a number to get the other, then $y=c_{1} y_{1}+c_{2} y_{2}$ must be a solution. Looking at properties of functions, $e^{r x}$ seems like a good solution to the equation. If $e^{r x}$ is indeed a solution, then plugging back into the main equation gives

$$
m r^{2} e^{r x}+\beta r e^{r x}+k e^{r x}=\left(m r^{2}+\beta r+k\right) e^{r x}=0
$$

That means that if $e^{r x}$ is a solution $m r^{2}+\beta r+k=0$. This is the auxiliary equation, and notice that we can get two roots, one root, or zero real roots. An over-damped oscillator will result in two roots in the equation. If r_{1} and r_{2} are solutions, then from the theorem above, the solution must be

$$
x(t)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

These two roots are

$$
r=\frac{-\beta \pm \sqrt{\beta^{2}-4 m k}}{2 m}
$$

Thus,

$$
x(t)=c_{1} e^{\frac{-\beta+\sqrt{\beta^{2}-4 m k}}{2 m}} t+c_{2} e^{\frac{-\beta-\sqrt{\beta^{2}-4 m k}}{2 m} t}
$$

The constants c_{1} and c_{2} can be determined by the amplitude and the initial velocity of the oscillation.

2 Critically Damped Oscillators

A critically damped oscillator just slightly overshoots the equilibrium position and gently returns to equilibrium. In this case, the auxiliary equation derived in section 1

$$
m r^{2}+\beta r+k=0
$$

must have one solution. Let r be the one solution. Then

$$
r=-\frac{\beta}{2 m} .
$$

However, we cannot use the solution above by putting r for both r_{1} and r_{2} as that would result in two linearly dependent terms. However, if we know that $e^{r x}$ is a solution, then it can be verified that $y=x e^{r x}$ is a solution using substitution into the original equation and the fact that $2 m r+\beta=0$. Thus, a solution is

$$
x(t)=c_{1} e^{-\frac{\beta}{2 m} t}+c_{2} t e^{-\frac{\beta}{2 m} t}=\left(c_{1}+c_{2} t\right) e^{-\frac{\beta}{2 m} t}
$$

3 Under-damped Oscillators

An under-damped oscillator will oscillate, but the amplitude will gradually decrease and the oscillations will gradually die out. The auxiliary equation

$$
m r^{2}+\beta r+k=0
$$

has no real solutions but two complex solutions. Let r_{1} and r_{2} be solutions. Let $r_{1}=a+b i$ and $r_{2}=a-b i$. Using the general solution from section 1 , we can show that

$$
x(t)=C_{1} e^{(a+b i) t}+C_{2} e^{(a-b i) t}=e^{a t}\left(C_{1} e^{i b t}+C_{2} e^{-i b t}\right)
$$

Using Euler's Formula $e^{i \theta}=\cos \theta+i \sin \theta$, we can show that

$$
x(t)=e^{a t}\left(C_{1}(\cos b t+i \sin b t)+C_{2}(\cos b t-i \sin b t)\right.
$$

Simplifying, we get

$$
x(t)=e^{a t}\left[\left(C_{1}+C_{2}\right) \cos b t+i\left(C_{1}-C_{2}\right) \sin b t\right]=e^{a t}\left(c_{1} \cos b t+c_{2} \sin b t\right)
$$

where $c_{1}=C_{1}+C_{2}$ and $c_{2}=i\left(C_{1}-C_{2}\right)$. If we are looking for real solutions, then c_{1} and c_{2} must be real. Back to the original equation, we get

$$
r=-\frac{\beta}{2 m} \pm \frac{i \sqrt{4 m k-\beta^{2}}}{2 m}
$$

Thus, the solution is

$$
x(t)=e^{-\frac{\beta}{2 m} t}\left[c_{1} \cos \left(\frac{\sqrt{4 m k-\beta^{2}}}{2 m} t\right)+c_{2} \sin \left(\frac{\sqrt{4 m k-\beta^{2}}}{2 m} t\right)\right]
$$

