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Robot localization in a mapped environment
using Adaptive Monte Carlo algorithm

Sagarnil Das

Abstract—Localization is the challenge of determining the robot’s pose in a mapped environment. This is done by implementing a
probabilistic algorithm to filter noisy sensor measurements and track the robot’s position and orientation. This paper focuses on
localizing a robot in a known mapped environment using Adaptive Monte Carlo Localization or Particle Filters method and send it to a
goal state. ROS, Gazebo and RViz were used as the tools of the trade to simulate the environment and programming two robots for
performing localization.

Index Terms—Robot, Localization, Mobile Robotics, Extended Kalman Filters, Adaptive Monte Carlo.
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1 INTRODUCTION

THE localization problem is of utmost importance in the
real world as this gives us a probabilistic estimate of

the robot’s current position and orientation. So, it is very
obvious that without this knowledge, the robot won’t be
able to take effective decisions and take sound actions if it
doesn’t know where it is located in the world. There are 3
different types of localization problems.

a) Local Localization: This is the easiest localization
problem. It is also known as position tracking. In this
problem, the robot knows its initial pose and the localization
challenge entails estimating the robot’s pose as it moves
out in the environment. This problem is not trivial as there
is always some uncertainty in robot motion. However, the
uncertainty is limited to regions surrounding the robot.

b) Global Localization: This is a more complicated lo-
calization problem. In this case, the robot’s initial pose is
unknown and the robot must determine its pose relative to
the ground truth map. The amount of uncertainty is much
higher.

c) The kidnapped robot problem: This is the most
challenging localization problem. This is just like the global
localization problem, except that the robot may be kid-
napped at any time and moved to a new location on the
map.

Fig. 1: Robot Localization

Two robots were developed and tested in a simulation
environment. Both the robots successfully localized them-

selves and navigated the maze using Adaptive Monte Carlo
algorithm (AMCL). The benchmark robot’s URDF was given
as a part of the project whereas the second robot was build
independently. The benchmark robot was called UdacityBot
and the 2nd robot was called SagarBot. The world-map is
called ’Jackal-Race’ and was created by Clearpath Robotics.
[1]

2 BACKGROUND

For the localization problem, a wide range of algorithms are
available ranging from Monte Carlo Localization, Extended
Kalman Filter to Markov and finally Grid Localization. The
Monte Carlo Localization algorithm or MCL, is the most
popular localization algorithms in robotics. After MCL is
deployed, the robot will be navigating inside its known
map and collect sensory information using RGB camera and
range-finder sensors. MCL will use these sensor measure-
ments to keep track of the robot’s pose. MCL is often re-
ferred to as Particle Filter Localization, since it uses particles
to localize the robot. These particles are virtual elements
that resembles the robot. Each particle has a position and
orientation and it represent a guess where the robot might
be located. These particles are re-sampled each time the
robot moves and senses its environment. For this project,
a modified version of this algorithm known as ’Adaptive
Monte Carlo Localization’ was used because this modified
algorithm dynamically adjusts the number of particles over
a period of time, as the robot navigates around the map,
hence making the process more cost effective.

Some of the current challenges of localization involves:
a) It doesn’t operate well in an unmapped environment.
b) In the multi robot localization problem, which in-

volves a team of robots which simultaneously seek to de-
termine their poses in a known environment, dependencies
are created in the pose estimates of individual robots that
pose major challenges for the design of the estimator. [2]

2.1 Kalman Filters
The Kalman filter is an estimation algorithm that is very
prominent in controls. It is used to estimate the value of
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a variable in real time as the data is being collected. This
variable can represent the position or velocity of the robot,
or even the temperature of a process.

The reason that the Kalman filter is so net worthy is
because it can take data with a lot of uncertainty or noise
in the measurement and provide a very accurate estimate of
the real values in a very short time. Unlike other estimation
algorithms, it doesn’t depend on a lot of data to come in
order to calculate an accurate estimate. The Kalman filter
was invented during the Apollo program. It was used to
help Apollo enter the orbit of the moon. Since its success
with the Apollo program, Kalman filter has become one
of the most practical algorithms in the field of control
engineering.

The Kalman filter works cyclically between two steps.
The Kalman filter produces an estimate of the state of
the system as an average of the system’s predicted state
and of the new measurement using a weighted average.
The purpose of the weights is that values with better
(i.e., smaller) estimated uncertainty are ”trusted” more. The
weights are calculated from the covariance, a measure of
the estimated uncertainty of the prediction of the system’s
state. The result of the weighted average is a new state
estimate that lies between the predicted and measured state,
and has a better estimated uncertainty than either alone.
This process is repeated at every time step, with the new
estimate and its covariance informing the prediction used
in the following iteration. This means that the Kalman filter
works recursively and requires only the last ”best guess”,
rather than the entire history, of a system’s state to calculate
a new state.

The linear Kalman filter assumes that the output is
proportional to the input and hence it can be only applied
to linear systems. This limitation is overcome with Extended
Kalman filters, which can be applied to non-linear systems,
which is more applicable in robotics as real world systems
are more often non-linear than linear. Also Linear Kalman
filter assumes that both the prior and the posterior follows
a unimodal Gaussian distribution. But in real world, that
is seldom the case. Extended Kalman filters overcome this
problem by linear approximation of the posterior distribu-
tion after a non-linear transformation. [3]

2.2 Particle Filters

The Monte Carlo Localization or Particle Filters uses virtual
particles to estimate a robot’s pose. With MCL, particles
are initially spread uniformly and randomly throughout
the entire map. Just like the robot, each particle has a x-
y coordinate and an orientation vector. So each of these
particles represent the hypothesis of where the robot might
be. In addition to the 3d vector, particles are assigned a
weight. The weight of a particle is the difference between
the robot’s actual pose and the particle’s predicted pose.
The importance of a particle is dependent on its weight. The
bigger the particle, more accurate it is.

Particles with larger weights are more likely to survive
during the re-sampling process. After the re-sampling pro-
cess, particles with significant weights are more likely to
survive whereas others are more likely to die. Finally after
several iterations of the algorithm and after different stages

of re-sampling, particles will converge and estimate the
robot’s pose.

The MCL algorithm estimates the posterior distribution
of a robot’s position and orientation based on sensory infor-
mation. This process is known as Bayes Filter. Using a Bayes
filtering approach, the state of a dynamical system can be
estimated from the sensor measurements.

The MCL algorithm is composed of two main sections
represented by two for-loops.

Algorithm 1 MCL algorithm

1: procedure MCL(xt−1, ut, zt)
2: Xt ← φ
3: for m=1 to M loop:
4: x[m]

t ←MotionUpdate(ut, x
[m]
t-1)

5: w[m]
t ← SensorUpdate(zt, x

[m]
t)

6: Xt ← Xt+ < x[m]
t + w[m]

t >)
7: end for
8: for m=1 to M loop:
9: draw x[m]

t with probability ∝ w[m]
t

10: Xt ← Xt + x[m]
t)

11: end for
12: return Xt

The first section is the motion and sensor update and the
second one is the re-sampling process. Given a map, MCL is
to determine the robot’s pose represented by the belief (Xt).

At each iteration, the algorithm takes the previous belief
(Xt−1), the actuation command (ut) and the sensor mea-
surement (zt) as input. Initially, the belief is obtained by
randomly generating m particles. Then in the first loop, the
hypothetical state is computed whenever the robot moves.
Following, the particles’ weight is computed using the latest
sensor measurement. Now motion and measurements are
both added to the previous state.

In the second section of the MCL, a simple sampling
process happens. Here, the particles with high probability
survive and are re-drawn in the next iteration, while the
others die.

Finally, the algorithm outputs the new belief and another
cycle of iteration starts implementing the next motion by
reading the new sensor measurements.

2.3 Comparison / Contrast
There are certain significant benefits of Monte Carlo Local-
ization over Extended Kalman Filter algorithm. Firstly, MCL
is easy to code. Secondly, MCL represents non-Gaussian
distribution and can approximate any other practical im-
portant distribution. This means MCL is unrestricted by a
linear Gaussian state based assumption as in the case of
EKF. This allows MCL to model a much greater variety
of environments specially since the real world cannot be
always modeled by Gaussian distributions. Thirdly, in MCL,
the computational memory and the resolution of the solu-
tion can be controlled by changing the number of particles
distributed uniformly and randomly throughout the map.

The general difference between MCL and EKF is de-
scribed in the table below.

So MCL is generally more advantageous than EKF and
hence MCL will be implemented for the purpose of this
project.
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Fig. 2: EKF vs MCL comparison

3 SIMULATIONS

The simulations were done in a ROS environment using
Gazebo and RViz. The navigation stack [4] can be visualized
as follows:

Fig. 3: Navigation Stack

The whole simulation process was carried out on both
UdacityBot and SagarBot. The algorithm and map visual-
ization process were done in RViz. We can also see the robot
in action inside the Gazebo simulation environment.

Fig. 4: Robot in Gazebo environment

Initially, for both the bots, particles are very dispersed
indicating great uncertainty in the robot position. At this

point, sensors have not yet provided any information re-
garding the location. Fig 5 shows the great uncertainty of
the robot’s position represented by the particles denoted by
red arrows.

Fig. 5: High uncertainty in robot position

After the simulation is started, the localization process
starts from taking the sensor measurements and gradually
improve. After the algorithm converges, the particles effec-
tively depicts the pose of the robot in the map, thus making
the robot successfully navigate through the maze and reach
the goal state.

3.1 Achievements

For this project, two robots were deployed in the simulation
environment. The benchmark model or UdacityBot and the
custom made model or SagarBot.

3.1.1 UdacityBot

The UdacityBot initially started towards the north of the
map as from its local costmap, it calculated the path to the
goal from its starting position to be shorter than any other
paths. But it soon discovered the presence of an obstacle
and the impossibility of reaching the goal through that path.
Then it turned around and reached the goal through the
2nd most shortest path. Fig. 6 depicts UdacityBot at the goal
position.

3.1.2 SagarBot

The SagarBot also exhibited similar behavior and started to-
wards north of the map, before discovering the impossibility
of that route and then it reached the goal position through
more or less the same route UdacityBot has taken. Fig. 7
depicts SagarBot at the goal position.
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Fig. 6: UdacityBot at the goal position

Fig. 7: SagarBot at the goal position

3.2 Benchmark Model

3.2.1 Model design
The robot’s design considerations included the size of the
robot and the layout of the sensors. They are discussed
below.

3.2.1.1 Maps

The Clearpath [1] jackalrace.yaml and jackalrace.pgm were
used to create the maps.

3.2.1.2 Meshes

The laser scanner which was used in the robot for detecting
obstacles is the Hokuyo scanner [5]. The mesh hokuyo.dae
was used to render it.

3.2.1.3 Launch files

Three launch files were used. They are as follows:

1. robot_description.launch: This launch file de-
fines the joint_state_publisher which sends fake
joint values, robot_state_publisher which sends robot
states to tf and robot_description which defines and
sends the URDF to the parameter server.

2. amcl.launch: The amcl package relies entirely on the
robots odometry and the laser scan data. This file launches
the AMCL localization server, the map server, the odometry
frame, the move_base server and the trajectory planner
server.

3. udacity_world.launch: This is the primary launch
file which contains the robot_description.launch file,
the gazebo world and the AMCL localization server. It
also spawns the robot and launches RViz. Fig. 8 depicts
the connection graph between the discussed nodes. Fig. 9
depicts the UdacityBot at the goal location and the AMCL
particles as seen in RViz.

Fig. 8: Node relations

Fig. 9: RViz interface with UdacityBot at goal position

3.2.1.4 Worlds

This project was done in two worlds.
1. Udacity world: This is the original blank world where

the robots were created and prototyped. This defines the
ground plane, the light source and the world camera.

2. jackal_race world: This world defines the maze.

3.2.1.5 URDF

The URDF files defines the shape and size of the robot. Two
files were used as URDFs:

1. udacity_bot.xacro: Provides the shape and size of
the robot in macro format. For the UdacityBot, a fixed base
is used. A single link, with the name defined as ”chassis”,
encompassed the base as well as the caster wheels. Each link
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has specific elements, such as the inertial or the collision
elements. The chassis is a cuboidal (or box), whereas the
casters are spherical as denoted by their ”geometry” tags.
Each link (or joint) has an origin (or pose) defined as well.
Every element of that link or joint will have its own origin,
which will be relative to the link’s frame of reference.

For this base, as the casters are included as part of
the link (for stability purposes), there is no need for any
additional links to define the casters, and therefore no joints
to connect them. The casters do, however, have friction
coefficients defined for them, and are set to 0, to allow for
free motion while moving.

Two wheels were attached to the robot. Each wheel is
represented as a link and is connected to the base link
(the chassis) with a joint. For each wheel, a ”collision”,
”inertial” and ”visual” elements are present. The joint type
is set to ”continuous” and is similar to a revolute joint
but has no limits on its rotation. It can rotate continuously
about an axis. The joint will have it’s own axis of rotation,
some specific joint dynamics that correspond to the physical
properties of the joint like ”friction”, and certain limits to
enforce the maximum ”effort” and ”velocity” for that joint.
The limits are useful constraints in regards to a physical
robot and can help create a more robust robot model in
simulation as well.

For the UdacityBot, two sensors were used. A camera
and a Laser range-finder (hokuyo sensor).

2. udacity_bot.gazebo: This file was included as the
URDF file is unable to make the robot take pictures with the
camera or detect obstacle with the Laser range-finder. This
file contains 3 plugins, one each for the camera sensor, the
hokuyo sensor and the wheel joints. It also implements a
differential drive controller.

Fig. 10 depicts the navigation goal messages.

Fig. 10: Navigation goal messages

3.2.2 Packages Used
A ros package called udacity_bot was designed for this
project. The structure of this package is shown below.

• config

• images
• launch
• maps
• meshes
• src
• urdf
• worlds

This package, along with the AMCL and the navigation
stack packages were crucial for the success of the mobile
robot in performing a localization task. Table 1 describes
UdacityBot setup instructions.

TABLE 1: Udacity Bot setup instructions

Udacity Bot Body

Part Geometry Size

Camera Sensor Cube 0.4 x 0.2 x 0.1

Back and Front Casters Sphere 0.0499 (radius)

Left and Right wheels Cylinders 0.1 (radius), 0.05 (length)

Camera Sensor

Link Origin
Shape-size

Joint Origin
Parent Link
Child Link

[0, 0, 0, 0, 0, 0]
Box - 0.05 x 0.05 x 0.05

[0.2, 0, 0, 0, 0, 0]
chassis
camera

Hokuyo Sensor

Link Origin
Shape-Size
Joint Origin
Parent Link
Child Link

[0, 0, 0, 0, 0, 0]
Box - 0.1 x 0.1 x 0.1
[0.15, 0, 0.1, 0, 0, 0]

chassis
hokuyo

3.2.3 Parameters
Exploring, adding and tuning parameters for the AMCL
and move base packages were some of the main goals
of this project. For effective parameter tuning, ROS basic
navigation tuning guide [6] and Kaiyu Zheng’s navigation
tuning guide [7] were heavily used. The parameters were
iteratively tuned to see what works best for the UdacityBot.
The AMCL parameters were tuned as follows:

The min and max particles parameters were set to 25
and 200 in order to prevent over-usage of CPU. Increasing
the max particles did not improve the robot’s initial ability
to find itself with certainty.

The transform tolerance was one of the main parame-
ters to tune. The tf package, helps keep track of multiple
coordinate frames, such as the transforms from these maps,
along with any transforms corresponding to the robot and
its sensors. Both the amcl and move base packages or nodes
require that this information be up-to-date and that it has
as little a delay as possible between these transforms. The
maximum amount of delay or latency allowed between
transforms is defined by the transform tolerance parameter.
It was finally set to 1.25 for the cost-maps and 0.2 for the
amcl package.

The laser model parameters like laser max beams,
laser z hit and laser z rand, were kept as default as the
obstacles were clearly detected in the local cost-maps with
them as is. Fig. 11 depicts this observation.

The odom model type was kept as diff-corrected as
this mobile robot followed a differential drive. There
are additional parameters that are specific to this type
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Fig. 11: Local cost-map with AMCL particles converged

- the odom alphas (1 through 4). These parameters de-
fine how much noise is expected from the robot’s move-
ments/motions as it navigates inside the map. They were
kept at 0.005, 0.005, 0.010 and 0.005 respectively obtained
from trial-error method. Table 2 depicts the AMCL parame-
ters used.

TABLE 2: AMCL parameters

AMCL Parameters

Parameter Value

odom frame id odom

odom model type diff-corrected

transform tolerance 0.2

min particles 25

max particles 200

initial pose x 0.0

initial pose y 0.0

initial pose a 0.0

laser z hit 0.95

laser z short 0.1

laser z max 0.05

laser z rand 0.5

laser sigma hit 0.2

laser lambda short 0.1

laser model type likelihood field

laser likelihood max dist 2.0

odom alpha1 0.005

odom alpha2 0.005

odom alpha3 0.010

odom alpha4 0.005

The move base parameters were tuned as follows:
The obstacle range parameter was modified to have a

greater value of 1.5. This parameter depicts the default

maximum distance from the robot (in meters) at which an
obstacle will be added to the cost-map.

The raytrace range parameter was modified to a higher
value of 4.0. This parameter is used to clear and update the
free space in the cost-map as the robot moves.

Two parameters in the global and local cost-maps were
also changed. They are:

1. update frequency: This value was set to 10.0. This is
the frequency in Hz for the map to be updated.

2. publish frequency: This value was also set to 10.0. This
is the frequency at which the map will be published on the
display.

The yaw goal tolerance was updated to a value of 0.1.
This parameter depicts the tolerance in radians for the
controller in yaw/rotation when achieving its goal. The
xy goal tolerance was updated to a value of 0.2. This is
the tolerance in meters for the controller in the x-y distance
when achieving the goal. Both these parameters were dou-
bled to allow for additional flexibility in trajectory planning.
The transform tolerance was set to 1.25. Table 3 depicts the
move base parameters used.

TABLE 3: move base parameters

move base Parameters

Parameter Value

yaw goal tolerance 0.1

xy goal tolerance 0.2

obstacle range 1.5

raytrace range 4.0

inflation radius 0.65

robot radius 0.3

update frequency 10.0

publish frequency 10.0

3.3 Personal Model - SagarBot

3.3.1 Model design
The SagarBot has a similar structure as UdacityBot, but it
has a square base and is bigger in size. The laser sensor was
also moved to the front of the robot.

3.3.1.1 Maps

The Clearpath jackal race.yaml and jackal race.pgm packages
were used to create the map, similar to the UdacityBot. [1]

3.3.1.2 Meshes

A hokuyo scanner was simulated as the laser scanner. The
hokuyo.dae mesh was used to render it.

3.3.1.3 Launch

Three launch files were used. They are:
1. robot_description_sagar.launch: This launch

file defines the joint_state_publisher which sends
fake joint values, robot_state_publisher which sends
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robot states to tf and robot_description which defines
and sends the URDF to the parameter server.

2. amcl_sagar.launch: The amcl package relies en-
tirely on the robots odometry and the laser scan data.
This file launches the AMCL localization server, the map
server, the odometry frame, the move_base server and the
trajectory planner server.

3. udacity_world_sagar.launch: This
is the primary launch file which contains the
robot_description_sagar.launch file, the gazebo
world and the AMCL localization server. It also spawns
the robot and launches RViz. Fig. 8 depicts the connection
graph between the discussed nodes. Fig. 9 depicts the
UdacityBot at the goal location and the AMCL particles as
seen in RViz.

3.3.1.4 Worlds

: The SagarBot uses the same worlds as the UdacityBot.

3.3.1.5 URDF

: The URDF files defines the shape and size of the robot. Two
files were used to define the basic robot description and the
gazebo view.

1. sagar bot.gazebo: This file defines the differential
drive controller, the camera and the camera controller, the
controller for Gazebo and Hokuyo laser scanner.

2. sagar bot.xacro: Defines the robot’s shape in macro
format. sagar bot follows a similar structure as udacity bot
except it’s square in shape and bigger. Table 4 defines the
parameters used in sagar bot.xacro.

TABLE 4: SagarBot setup instructions

SagarBot Body

Part Geometry Size

Camera Sensor Cube 0.4 x 0.4 x 0.1

Back and Front Casters Sphere 0.05 (radius)

Left and Right wheels Cylinders 0.1 (radius), 0.05 (length)

Camera Sensor

Link Origin
Shape-size

Joint Origin
Parent Link
Child Link

[0, 0, 0, 0, 0, 0]
Box - 0.05 x 0.05 x 0.05

[0.2, 0, 0, 0, 0, 0]
chassis
camera

Hokuyo Sensor

Link Origin
Shape-Size
Joint Origin
Parent Link
Child Link

[0, 0, 0, 0, 0, 0]
Box - 0.1 x 0.1 x 0.1
[0.15, 0, 0.1, 0, 0, 0]

chassis
hokuyo

3.3.2 Packages Used
Same as UdacityBot.

3.3.3 Parameters
The AMCL parameters were kept the same as UdacityBot,
but significant changes were made in the move base param-
eters. The move base parameters were tuned as follows:

The obstacle range parameter was modified to have a
greater value of 5.0. This parameter depicts the default
maximum distance from the robot (in meters) at which an

obstacle will be added to the cost-map. This was done in a
trial-and-error method. The basic intuition behind increas-
ing this parameter was as the SagarBot was larger in size,
it moved slower. So additional time was wasted if it was
unable to see an obstacle in moderate range and followed
the path towards it only to find the region bounded by an
obstacle. Hence, in order to increase its sight with respect to
the cost-map, a higher value of this parameter was used.

The raytrace range parameter was modified to a higher
value of 8.0. This parameter is used to clear and update the
free space in the cost-map as the robot moves.

Two parameters in the global and local cost-maps were
also changed. They are:

1. update frequency: This value was set to 10.0. This is
the frequency in Hz for the map to be updated.

2. publish frequency: This value was also set to 10.0. This
is the frequency at which the map will be published on the
display.

The yaw goal tolerance was updated to a value of 0.1.
This parameter depicts the tolerance in radians for the
controller in yaw/rotation when achieving its goal. The
xy goal tolerance was updated to a value of 0.2. This is
the tolerance in meters for the controller in the x-y distance
when achieving the goal. Both these parameters were dou-
bled to allow for additional flexibility in trajectory planning.
The transform tolerance was set to 1.25. Table 5 depicts the
move base parameters used.

TABLE 5: move base parameters for SagarBot

move base Parameters

Parameter Value

yaw goal tolerance 0.1

xy goal tolerance 0.2

obstacle range 5.0

raytrace range 8.0

inflation radius 0.55

robot radius 0.4

update frequency 10.0

publish frequency 10.0

4 RESULTS

4.1 Localization Results

4.1.1 Benchmark - UdacityBot

The time taken for the particle filters to converge was
around 5-6 seconds. The UdacityBot reaches the goal within
approximately two minutes. So the localization results are
pretty decent considering the time taken for the localization
and reaching the goal. However, it does not follow a smooth
path for reaching the goal. Initially, the robot heads towards
the north as it was unable to add the obstacle over there in
its local cost-map and hence it followed the shortest path to
the goal. But soon, it discovered the presence of the obstacle
and it changed its strategy to the next shortest route to reach
the goal, i.e. head south-east, turn around where the obstacle
ends and reach the goal.
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4.1.2 Student - SagarBot
The time taken for the particle filters to converge was
around 30-40 seconds. The SagarBot reaches the goal within
approximately 15-20 minutes. So here, a deterioration of the
results is observed. This can be attributed to the heavier
mass of the SagarBot, even though no wheel slippage was
kept for both the robots in their respective URDFs.

4.2 Technical Comparison

SagarBot was significantly heavier than the UdacityBot.
SagarBot has a square shape and also the Laser finder was
moved to the front.

5 DISCUSSION

UdacityBot performed significantly better than SagarBot.
This might be attributed to the fact that SagarBot is consid-
erably heavier than UdacityBot. This significantly changed
SagarBot’s speed and hence the time it takes to reach the
goal also increased. Sagarbot, which occupies more space
than UdacityBot also had a problem navigating with a
higher inflation radius as it thought the obstacles to be
thicker than they really are and hence deducing that it
has not enough space to navigate. As a result, sometimes
SagarBot froze in one place trying to figure out an alternate
route which took a long time. So, when the inflation radius
was decreased, the performance of SagarBot improved con-
siderably.

The obstacle range was also another important parame-
ter to tune. SagarBot, being slower in speed naturally wastes
a lot of time if it goes to the wrong direction only to find an
obstacle there. So in order to be able to successfully add an
obstacle to its cost-map from a significantly larger distance,
this parameter was increased which resulted in significant
improvement of SagarBot’s performance.

5.1 Topics

• UdacityBot performed better.
• One might infer the better performance of Udacity-

Bot due to its smaller mass.
• In the ’Kidnapped-robot’ problem, one has to suc-

cessfully account for the scenario that at any point in
time, the robot might be kidnapped and placed in a
totally different position of the world.

• In any scenario, where the world map is known, but
the position of the robot is not, localization can be
successfully used.

• MCL/AMCL can work well in any industry domain
where the robot’s path is guided by clear obstacles
and where the robot is supposed to reach the goal
state from anywhere in the map. The ground also
needs to be flat and obstacle free, particularly in
the cases where the laser range-finder is at a higher
position and cannot detect objects on the ground.

6 CONCLUSION / FUTURE WORK

Both robots satisfied the two conditions, i.e. Both were
successfully localized with the help of AMCL algorithm

and both reached the goal state within a decent time-
limit. UdacityBot performed better than SagarBot which
can be attributed to the heavier mass of SagarBot. This
time difference was reduced significantly by increasing the
obstacle range and inflation radius parameters. The main
issue with both the robots was erroneous navigation as
both of the robots took a sub-optimal route due to the lack
of knowledge of an obstacle beforehand. However, as the
primary focus of this project was localization, this problem
was ignored due to time constraint.

Even though both the robots reached the goal eventually,
as they failed to take the optimal route to the goal location,
this implies that neither of these robots can be deployed in
commercial products.

Placement of the laser scanner can also play a vital role
in the robot’s navigation skill. Placing the scanner too high
from the ground could result in the robot missing obstacles
in the ground and then get stuck on it causing a total sensor
malfunction. On the other hand, placing the scanner too low
may prevent the robot from perceiving better as it gets more
viewing range in this situation. So this would be another
important modification to improve the robots.

Future work would involve making both the robots
commercially viable by working on making/tuning a better
navigation planner.

Also, the present model deployed only has one robot in
a world at a time. In future, this project could be expanded
to include multiple robots in the same world, each with the
same goal or a different one.

For a detailed version of this project,
this github reopsitory can be referred to:
https://github.com/sagarnildass/Robotics Nanodegree/tree/master/Term2/Project 2 RoboND Where am I/udacity bot.
[8]

6.1 Hardware Deployment
1) This present model was done in a simulation envi-

ronment in a local computer hosting Ubuntu 16.04
on a core-i7 machine and NVIDIA GTX 1080Ti
GPU. In order to deploy it in a hardware system
like NVIDIA Jetson TX2, the TX2 prototype board
camera could be connected into the model with suit-
able drivers. Laser range-finder hardwares would
also need to be integrated in order the hardware
version to successfully operate and detect obstacles.
It would also need GIO connections for driving the
wheels and be implemented on a suitable platform
modeling the robot which was simulated.

2) The JETSON TX2 has sufficient has adequate pro-
cessing power both in CPU and GPU memory to
successfully host this model.
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