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Abstract

In 1957 Herbert Kroemer published a paper entitled “Quasi-Electric
and Quasi-Magnetic Fields in Non-Uniform Semiconductors”3. In it he
expressed the utility of non-uniform semiconductor alloys in exploiting
their natural atomic potential gradients to imply quasi-electric fields. The
breakthrough in Modulation Doped Field Effect Transistors ( or MOD-
FETs) came from the ground-breaking work done by him and Zhores
Alferov on Semiconductor hetero-structures that utilize these very fields.
I will examine just Herbert’s findings.

1 Introduction

Let’s begin by first reviewing conductivity in metals and the partnership be-
tween electrons and electron-holes. It is common knowledge that electric current
is made up of moving electric charge. We say a material is more conducive to
electric current if external stimulus can excite its valence electrons to transition
to the conduction energy band. Metals for instance are highly conductive be-
cause they have a surplus of valence electrons that live very close to the empty
conduction band; therefore at the prompting of an external electric field are able
to transition, inducing a current. Consider next the effect a constant external
electric field has on the energy band structure of a homogeneous semiconductor.
See 1. Note that the effect an electric field has on an electron is reversed for
a hole. We can think of electrons and electron holes as particles that fall in
opposite directions. Now notice in diagram (a) of 1 that the external electric
field changes the energetic topology of the valence band (where the electron
holes live) and the conduction band (where the electrons live) identically, such
that the charged particles experience a gradient and begin to fall, electrons to
the right and the holes to the left. Recalling,

F = q ∗ E

we can see by integrating both sides,

∆U = q ∗∆V,

thus the change in electric potential energy is linearly proportional to the change
in electric potential. With electrons losing the same amount of energy that holes
gain over the same change in electrostatic potential.
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Now, in Quantum Mechanics we know that the momentum of a particle in
a well is,

p =
hk

2π
, k = nL

(L being the size of an atom); and the Energy of bound particles is quantized. It
follows that a solution for an electron in a periodic potential (2) is in order, the
derivation of which happily lives in chapter 15.1 of Solid State Basics3. However
a simpler version of this is derived in chapter 11.23, it gives the dispersion
relation between energy and momentum states in allowed energy bands:

E = Vo − 2t ∗ cos(kL)

see 3, with Vo being the potential energy required for an electron to sit on a
particular atom in the periodic potential, and t the energy required for an elec-
tron to hop to another nucleus. This dispersion curve is critical for determining
the conductivity of a material since the allowed energies and momentum’s avail-
able to the conduction band are characterized by this equation. Because of the
periodic nature of the result, the allowed k-states for any band are bounded
to a equivalent width of 2L

π see 4. Adding up the momentum for the top di-
agram in 3, we see that no current flows because the sum of momentum’s is
zero, and from the bottom we see that a current inducing electric field has the
effect of shifting the momentum states such that their total sum is non-zero.
Returning now to 2, it is clear that the application of a strong enough electric
field increases the availability of the whole spectrum of states. Alas, electrons
aren’t the only charge carriers we will be dealing with. Electron-holes, so named
because they are the vacancies electrons leave behind when they transition to
the conduction– or any higher band, move with opposite polarity in the valence
band. As a result, an external electric field has the pleasant outcome of inducing
currents of both electrons and their remnant holes.

Now in diagram (b) and (c) of 2 we see that the topology of each band can
be augmented independently. These simple looking alterations in actuality open
up a world of possibilities for semiconductor technology. This is precisely the
conclusion offered by quasi-electric fields arising from hetero-structures; the ma-
nipulability of electron band structure to the end of harnessing electric current.

Recall the Schrödinger equation3 in 5. The atomic periodic potential of
each atom in the in-homogeneous semiconductor is represented as being a vary-
ing function of the position vector x. Since the varying atomic potential in the
conduction band differs from the valence band, this equation becomes mathe-
matical evidence that quasi-electric fields exists.

Now let’s briefly review the generic homogeneous constant gap transistor.
This transistor is typically constructed from a crystalline alloy which is doped
with an excess of electrons (n-type) or electron holes (p-type). This gives rise
to two varieties of transistor, the npn and pnp, so named to indicate the or-
der of doping of the alloys used in construction and subsequently the order of
their junctions. The order of the n’s and p’s implies one other thing about
the structure of the transistor: what alloy is used as the collector, base, and
emitter. In an integrated circuit the constant gap transistor is used as a logical
element regulating the flow of current from the collector to the emitter through
an applied electric potential to the the base (called a gate); it goes by the clas-
sification, bipolar junction transistor. For the transistor in 6 we see the electron
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band structure of the three regions. Paying close attentions to the gap energy
between the conduction and valence bands – or equivalently the potential dif-
ference between the bands – we should notice that the separation is constant
throughout. This means that the whatever electric potential we apply at the
gate shifts the energies of both bands equally. This equivalence of potential
gradients in both bands implies that the magnitudes of both currents are iden-
tical. Another application, one that I believe illustrates the utility of transistors
and an area that has been most impacted by semiconductor heterostructures,
is amplification. So far we have ignored the differing degrees to which we can
dope the crystalline alloys we are implementing. Addressing this now, we should
recall the restrictions the dispersion from 2 imposed on the energy band struc-
ture of a material. Namely, for any given band there are only a limited range
of momentum states, and a corresponding upper limit to the number of elec-
trons which can occupy them before the sum of their momentums vanish, along
with current. It follows that this quality of semiconductors limits the extent
to which we can dope our crystalline alloys. If we add too many electrons or
electron holes we risk filling our conduction band to its limit and turning our
conductor into an insulator. This is as we shall see, a big problem in constant-
gap amplification. In 7 we see a bipolar junction transistor with an additional
electric potential applied to the collector lowering it below the emitter. That
said, the amplification of the transistor hinges heavily on the relationship be-
tween base and emitter, namely on the ratio of minority injection current over
total emitter current. This ratio 9, represents the emitter efficiency which is
proportional to the emitter amplification factor αce. Combining the equation
for the base amplification factor αcb 8, with the emitter efficiency gives 10. It
follows that the only way to improve the amplification factor of the base is to
increase the emitter current, by heavily doping the emitter, but as we have just
learned, we cannot dope to our heart’s content! Herbert Kroemer’s solution to
this problem?– the Wide-Gap Emitter, 11. Notice the difference in potential
gradients induced along the conduction and valence band edges at the junction.
The severity of these slopes indicate that the emitter efficiency can be optimized
without the use of dopants. Effectively paving the way through the insulating
ceiling on amplifiers. I would say this is by far the most impactful discovery of
the century!– And for how it has transformed Silicon valley, most notably Nobel
prize worthy.

The materials of choice, so it would seem for most if not all high-electron-
mobility transistors (HEMTs) or MODFETs are Ga, Al and As. These materials
form the alloys GaAs, AlAs, and AlGaAs. These alloys stand out because
their lattice constants are essentially the same3. The benefit of using alloys
with nearly the same lattice constants is for growing crystals of GaAs, AlAs
is the ideal substrate to grow GaAs on because there is a low probability that
discontinuities will appear during the growing process. Further, as there are
more than a few ways to grow GaAs and AlAs, I decided that Chemical Vapor
Deposition was the best. A typical reaction looks like:

Ga(CH3)3(g) +AsH3(g)→ GaAs(x) + CH4(g).

The process begins when the reactants sail in on carrier gas currents toward
the surface of the Group 3-5 semiconductor, in our case AlAs. Near AlAs they
undergo a gas-phase reaction where the GaAs forms and sticks to the surface
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via chemisorption and the CH4 is blown away. What’s noteworthy about this
process is that once everything is said and done, none of the Methane remains.

2 Figures

Figure 1: H. Kroemer, “Theory of a Wide-Gap Emitter for Transistors,” Proc.
IRE, vol. 45, pp. 1535-1537, 1957.

Figure 2: Simon, Steven H. The Oxford Solid State Basics. Oxford, United
Kingdom: Oxford University Press, 2013. Print.
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