Neural Network. Basic to application (painting style transfer)

Kim Woo Hyun

September 4, 2019

Outline

(1) Neural Network

- First Generation (ANN, Perceptron)
- Second Generation (MLP, Back-propagation)
- Thrid Generation (ReLU)

(2) Convolutional Neural Network

- Convolution layer
- ReLU layer
- Pooling layer
- Fully Connected layer
(3) Painting Style Transfer
- VGGnet
- Algorithm and Loss function
- Result

First Generation

Artificial Neural Network : ANN

At 1943 McCulloch, Warren S., and Walter Pitts suggested

- Mimic the human neural structure by connecting switches

First Generation

Perceptron

In 1958 Frank Rosenblatt suggested Linear Classifier.

- Expected computer can do things human can do better at that time.
- Basic structure is not changed until now.
- Using sigmoid with Activation function. (Make output $\in[0,1]$)

First Generation

Problem

In 1969 Marvin Minsky, Seymour Papert proved limitations of perceptron.

It can't solve XOR problem even.

Second Generation

Multi-Layer Perception : MLP

Make neurons deeper by make hidden layers of perception

- Solve the Non-Linear problems with multiple linear classifier.
- Too many parameters!!
- Needs parameter controller.

Second Generation

Back-propagation

Feedback algorithm controls the weights of neural network.

- i : input layer
- h : hidden layer
- o : output layer
- $w_{i j}$: weight connected to the neuron i to j .

Second Generation

- out: Output value of a neuron.
- in : sum of weighted output of connected neurons.
(in $=\sum w *$ out $)$
- t : Target value (Choose yourself!)
- Sigmoid activation function. Ex) out $t_{h 3}=\sigma\left(i n_{h 3}\right)=\frac{1}{1+e^{-i n_{h 3}}}$

Second Generation

Error with Sum of square (Euclidean Distance)

$$
E=\frac{1}{2}\left(t_{5}-\text { out }_{o 5}\right)^{2}+\frac{1}{2}\left(t_{6}-\text { out }_{o 6}\right)^{2}
$$

We want to see how much each weights influence to $E \Rightarrow$ Calculate $\frac{\partial E}{\partial w_{i j}}$ Example) Calculate $\frac{\partial E}{\partial w_{35}}$ with Chain-rule

$$
\frac{\partial E}{\partial w_{35}}=\frac{\partial E}{\partial o u t_{o 5}} * \frac{\partial o u t_{o 5}}{\partial i n_{o 5}} * \frac{\partial i n_{o 5}}{\partial w_{35}}
$$

Second Generation

First,

$$
\frac{\partial E}{\partial o u t_{o 5}}=\frac{\partial}{\partial o u t_{o 5}}\left[\frac{1}{2}\left(t_{5}-\text { out }_{o 5}\right)^{2}+\frac{1}{2}\left(t_{6}-\text { out }_{o 6}\right)^{2}\right]=\text { out }_{o 5}-t_{5}
$$

Second,

$$
\frac{\partial o u t_{05}}{\partial i n_{o 5}}=\frac{\partial \sigma\left(i n_{o 5}\right)}{\partial i n_{o 5}}
$$

Second Generation

The sigmoid function $\sigma(x)$ is

$$
\sigma(x)=\frac{1}{1+e^{-a x}}
$$

The differential of sigmoid $\sigma(x)$

$$
\begin{aligned}
\sigma^{\prime}(x) & =\frac{a e^{-a x}}{\left(1+e^{-a x}\right)^{2}} \\
& =a \frac{1}{\left(1+e^{-a x}\right)} \frac{e^{-a x}}{\left(1+e^{-a x}\right)} \\
& =a \frac{1}{\left(1+e^{-a x}\right)}\left(1-\frac{1}{\left(1+e^{-a x}\right)}\right) \\
& =a \sigma(x)(1-\sigma(x))
\end{aligned}
$$

Second Generation

First,

$$
\frac{\partial E}{\partial o u t_{o 5}}=\frac{\partial}{\partial o u t_{o 5}}\left[\frac{1}{2}\left(t_{5}-\text { out }_{o 5}\right)^{2}+\frac{1}{2}\left(t_{6}-\text { out }_{o 6}\right)^{2}\right]=\text { out }_{o 5}-t_{5}
$$

Second,

$$
\frac{\partial o u t_{05}}{\partial i n_{o 5}}=\frac{\partial \sigma\left(i n_{o 5}\right)}{\partial i n_{o 5}}=\sigma\left(i n_{o 5}\right)\left(1-\sigma\left(i n_{o 5}\right)\right)=\text { out }_{o 5}\left(1-o u t_{o 5}\right)
$$

Second Generation

First,

$$
\frac{\partial E}{\partial o u t_{o 5}}=\frac{\partial}{\partial o u t_{o 5}}\left[\frac{1}{2}\left(t_{5}-\text { out }_{o 5}\right)^{2}+\frac{1}{2}\left(t_{6}-\text { out }_{o 6}\right)^{2}\right]=\text { out }_{o 5}-t_{5}
$$

Second,

$$
\frac{\partial o u t_{05}}{\partial i n_{o 5}}=\frac{\partial \sigma\left(i n_{o 5}\right)}{\partial i n_{o 5}}=\sigma\left(i n_{o 5}\right)\left(1-\sigma\left(i n_{o 5}\right)\right)=\text { out }_{o 5}\left(1-o u t_{o 5}\right)
$$

Third,

$$
\frac{\partial i n_{o 5}}{\partial w_{35}}=\frac{\partial\left({ }^{o u t_{h 3}} * w_{35}\right)}{\partial w_{35}}=\text { out }_{h 3}
$$

Finally,

$$
\frac{\partial E}{\partial w_{35}}=\left(\text { out }_{o 5}-t_{5}\right)\left(1-\text { out }_{o 5}\right) o u t_{o 5} o u t_{h 3}
$$

Beautifully, all parameters are already calculated and what we have to do is easy math.

Second Generation

Then, how to update weights?

$$
w:=w-r \frac{\partial E}{\partial w}, \mathrm{r} \text { is constant called learning rate. }
$$

So, updated w_{35} is

$$
w_{35}:=w_{35}-r\left(\text { out }_{o 5}-t_{5}\right)\left(1-\text { out }_{o 5}\right) \text { out }_{o 5} \text { out }_{h 3}
$$

This method called Gradient descent.

Second Generation

Gradient descent

Simply, moving to orthogonal direction from contour line.
Why the direction to orthogonal? At minimum point of $\mathrm{f}(\mathrm{x}, \mathrm{y})$,

$$
\nabla f(x, y)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=0
$$

Assume direction of contour line is (a, b). Then using Tayler series, derive orthogonal direction by linearize the contour line.

$$
f\left(x_{1}+a, y_{1}+b\right) \simeq f\left(x_{1}, y_{2}\right)+\frac{\partial f}{\partial x} a+\frac{\partial f}{\partial y} b+\ldots
$$

The condition of (a, b) that minimize error is

$$
\frac{\partial f}{\partial x} a+\frac{\partial f}{\partial y} b=0
$$

Second Generation

If $a=\frac{\partial f}{\partial y}$ and $b=-\frac{\partial f}{\partial x}$.

$$
\frac{\partial f}{\partial x} a+\frac{\partial f}{\partial y} b=\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}+\frac{\partial f}{\partial y}\left(-\frac{\partial f}{\partial x}\right)=0
$$

In addition, the inner product of gradient and (a, b) is

$$
(\nabla f(x, y)) \cdot(a, b)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \cdot\left(\frac{\partial f}{\partial y},-\frac{\partial f}{\partial x}\right)=0
$$

It means the vector orthogonal to contour line is gradient itself. And if we track the gradient until it is 0 , we can find minimum point.
*Caution it can be a saddle point not minimum but I don't want to discuss in this time because I don't know.

Second Generation

Problems

- Gradient descent is bad at non-convex function, but sigmoid is non-convex function.

$$
\begin{gathered}
\sigma^{\prime \prime}(x)=a^{2} \sigma(x)(1-\sigma(x))(1-2 \sigma(x)) \\
a^{2} \sigma(x)(1-\sigma(x)) \geq 0 \text { but }-1 \leq 1-2 \sigma(x) \leq 1
\end{gathered}
$$

- Cost of back-propagation is Big.
- Vanishing Gradient Problem.

Second Generation

Cost of back-propagation.

Cost is big at shallow layer.
For example,

$$
\frac{\partial E}{\partial w_{13}}=\frac{\partial E}{\partial o u t_{h 3}} * \frac{\partial o u t_{h 3}}{\partial i n_{h 3}} * \frac{\partial i n_{h 3}}{\partial w_{13}}
$$

$$
=\left[\left(o u t_{o 5}-t_{5}\right)\left\{\text { out }_{o 5}\left(1-\text { out }_{o 5}\right)\right\} w_{35}+\left(o u t_{o 5}-t_{5}\right)\left\{o u t_{o 6}\left(1-o_{o u t}\right)\right\} w_{36}\right]
$$

$$
*\left(1-\text { out }_{h 3}\right) * \text { out }_{h 3} * \text { out }_{i 1}
$$

Of course! since it is chain-rule algorithm, it is easier than looks like. However if we have very big network?

Second Generation

Vanishing Gradient Problem

Because of sigmoid function, gradient is going to 0 while repeat Back-propagation.

Thrid Generation

Rectified Linear Unit : ReLU

- Convex : good at gradient descent.
- Cost of Back-propagation is decrease. (since $f^{\prime}(x)=1$ or 0 always)
- Safe from Vanishing Gradient Problem

All problems are from bad activation function.

Thrid Generation

Table 3: Non-linearities tested.

Name	Formula	Year
none	$\mathrm{y}=\mathrm{x}$	-
sigmoid	$\mathrm{y}=\frac{1}{1+e^{-x}}$	1986
tanh	$\mathrm{y}=\frac{e^{2 x}-1}{e^{2 x}+1}$	1986
ReLU	$\mathrm{y}=\max (\mathrm{x}, 0)$	2010
(centered) SoftPlus	$\mathrm{y}=\ln \left(e^{x}+1\right)-\ln 2$	2011
LReLU	$\mathrm{y}=\max (\mathrm{x}, \alpha \mathrm{x}), \alpha \approx 0.01$	2011
maxout	$\mathrm{y}=\max \left(W_{1} \mathrm{x}+b_{1}, W_{2} \mathrm{x}+b_{2}\right)$	2013
APL	$\mathrm{y}=\max (\mathrm{x}, 0)+\sum_{s=1}^{S} a_{i}^{s} \max \left(0,-x+b_{i}^{s}\right)$	2014
VLReLU	$\mathrm{y}=\max (\mathrm{x}, \alpha \mathrm{x}), \alpha \in 0.1,0.5$	2014
RReLU	$\mathrm{y}=\max (\mathrm{x}, \alpha \mathrm{x}), \alpha=\operatorname{random}(0.1,0.5)$	2015
PReLU	$\mathrm{y}=\max (\mathrm{x}, \alpha \mathrm{x}), \alpha$ is learnable	2015
ELU	$\mathrm{y}=\mathrm{x}$, if $\mathrm{x} \geq 0$, else $\alpha\left(e^{x}-1\right)$	2015

Notice at gap between tanh and ReLU.

Section 2. Convolutional Neural Network

- Convolution layer
- ReLU layer
- Pooling layer
- Fully Connected layer

Convolution layer

2D Convolution

Nothing specially different from 1D convolution.

- Input size $=7 x 7 x 1$
- Filter size $=3 \times 3$
- The number of filter $=1$
- Stride $=1$

Convolution layer

What is the filter do?

Assume weights are already trained.

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Curve detection filter and its visualization.

Filter

Original image

Visualization of the filter on the image

Visualization of the receptive field

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

```
Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30)=6600 (A large number!)
```

If Original image has similar shape at part, the result of Mult and Sum has a large number.

Filter

Visualization of the filter on the image

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

Pixel representation of receptive field

$*$| 0 | 0 | 0 | 0 | 0 | 30 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 30 | 0 | 0 |
| 0 | 0 | 0 | 30 | 0 | 0 | 0 |
| 0 | 0 | 0 | 30 | 0 | 0 | 0 |
| 0 | 0 | 0 | 30 | 0 | 0 | 0 |
| 0 | 0 | 0 | 30 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Pixel representation of filter

In contrast, If not, the result has a small number.

Trained filter can give a score for which feature exist or not!!

Filter

input neurons

0000000000000000000000000000
Visualization of 5×5 filter convolving around an input volume and producing an activation map
Each score is grouped together and forms layer by convolution.

Padding

0	0	0	0	0	0	0	0
0							0
0							0
0			original 6×6			0	
0							0
0							0
0							0
0	0	0	0	0	0	0	0
final 8×8							

- Attach zeros around the layer. (Zero-padding)
- Prevent from size decreasing while convolution.
- To catch the features at edge more detail.

Convolution layer

Convolution

$\mathrm{W}=$ width, $\mathrm{H}=$ Height, $\mathrm{D}=$ Depth, $\mathrm{P}=$ Padding, $\mathrm{S}=$ stride .
$\mathrm{F}=$ Filters W and $\mathrm{H}, \mathrm{N}=$ Number of filters.

ReLU layer

ReLU

- Zero OR Itself.
- Used to give Non-linearity and threshold.
- No parameter. No size change.

ReLU layer

Why we have to give a Non-linearity.

Experimental result is given.

Figure 2: Top-1 accuracy gain over ReLU in the CaffeNet-128 architecture. MaxS stands for "maxout, same compexity", MaxW - maxout, same width, CSoftplus - centered softplus. The baseline, i.e. ReLU, accuracy is 47.1%.

With Image.net classification test.

Pooling layer

- Usually, using Max-Pooling. (If higher value is important)
- No depth change.
- Reduce Complexity!!!!!!(Down-sampling) $\frac{1}{4}=75 \%$ reduced.
- Not Recessary. (But Recommended)

$$
W_{2}=\frac{W-F}{S}+1=\frac{224-2}{2}+1=112
$$

Fully Connected layer

convolution + pooling layers

- Make 2D layer to 1D line layer (Make layer to vector.)
- Used to compare with target.
- Making method is not only one.

Section 3. Painting Style Transfer

- VGGnet
- Algorithm and Loss function
- Result

VGGnet

- $F_{\text {conv }}=3(3 * 3 * D), S_{\text {conv }}=1$, Padding $=1$
- $F_{\text {Pool }}=2(2 * 2 * D), S_{\text {pool }}=2$

$$
\begin{gathered}
\frac{W-F_{\text {conv }}+2 P}{S_{\text {conv }}}+1=\frac{224-3+2 * 1}{1}+1=224 \\
\frac{W-F_{\text {conv }}}{S_{\text {pool }}}+1=\frac{224-2}{2}+1=112
\end{gathered}
$$

Painting style transfer

- Weights must be trained already.
- $a=$ style image, $p=$ content image
- $x=$ generated image.

Painting style transfer

- $N_{l}=$ Number of feature maps of l th layer
- $M_{l}=$ Size of feature map of l th layer
- $F^{l} \in \mathcal{R}^{N_{l} * M_{l}}$
- $F_{i j}^{l}$ is the activation of the $i^{t h}$ filter at position j in layer l
- $P_{i j}^{l}$ is same with $F_{i j}^{l}$ but it is from content image.(conv4_2)

$$
\mathcal{L}_{\text {content }}(\vec{p}, \vec{x}, l)=\frac{1}{2} \sum_{i, j}\left(F_{i j}^{l}-P_{i j}^{l}\right)^{2}
$$

So this loss function want to minimize distance of each value of same position between content layer and generate layer.

- $G^{l} \in \mathcal{R}^{N_{l} * N_{l}}$
- $G_{i j}^{l}$ is the inner product between the vectorized feature maps i and j in layer l (Gram matrix of style layer)

$$
G_{i j}^{l}=\sum_{k} F_{i k}^{l} F_{j k}^{l}
$$

- $A_{i j}^{l}$ is same with $G_{i j}^{l}$ but it is from content image.

$$
\begin{gathered}
E_{l}=\frac{1}{4 N_{l}^{2} M_{l}^{2}} \sum_{i, j}\left(G_{i j}^{l}-A_{i j}^{l}\right)^{2} \\
\mathcal{L}_{\text {style }}(\vec{a}, \vec{x})=\sum_{l=0}^{L} w_{l} E_{l}
\end{gathered}
$$

They have thought the style information is hide on correlation but I can't understand.

Painting style transfer

The differential of each loss function are

$$
\begin{gathered}
\frac{\partial \mathcal{L}_{\text {content }}}{\partial F_{i j}^{l}}= \begin{cases}\left(F^{l}-P^{l}\right)_{i j} & \text { if } F_{i j}^{l}>0 \\
0 & \text { if } F_{i j}^{l}<0,\end{cases} \\
\frac{\partial E_{l}}{\partial F_{i j}^{l}}= \begin{cases}\frac{1}{N_{l}^{2} M_{l}^{2}}\left(\left(F^{l}\right)^{\mathrm{T}}\left(G^{l}-A^{l}\right)\right)_{j i} & \text { if } F_{i j}^{l}>0 \\
0 & \text { if } F_{i j}^{l}<0 .\end{cases}
\end{gathered}
$$

And the total loss is

$$
\mathcal{L}_{\text {total }}(\vec{p}, \vec{a}, \vec{x})=\alpha \mathcal{L}_{\text {content }}(\vec{p}, \vec{x})+\beta \mathcal{L}_{\text {style }}(\vec{a}, \vec{x})
$$

- α and β are learning rate.

- λ is learning rate.
- At first, \vec{x} is white noise image.
- Not learning weights, learning $\vec{x}!!!!$

Result

Bonus

Thank you!

