
Neural Network. Basic to application
(painting style transfer)

Kim Woo Hyun

September 4, 2019

Kim Woo Hyun Seminar September 4, 2019 1 / 42



Outline

1 Neural Network
First Generation (ANN, Perceptron)
Second Generation (MLP, Back-propagation)
Thrid Generation (ReLU)

2 Convolutional Neural Network
Convolution layer
ReLU layer
Pooling layer
Fully Connected layer

3 Painting Style Transfer
VGGnet
Algorithm and Loss function
Result

Kim Woo Hyun Seminar September 4, 2019 2 / 42



First Generation

Artificial Neural Network : ANN

At 1943 McCulloch, Warren S., and Walter Pitts suggested

Mimic the human neural structure by connecting switches
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First Generation

Perceptron

In 1958 Frank Rosenblatt suggested Linear Classifier.

Expected computer can do things human can do better at that
time.

Basic structure is not changed until now.

Using sigmoid with Activation function. (Make output ∈ [0,1])
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First Generation

Problem

In 1969 Marvin Minsky, Seymour Papert proved limitations of
perceptron.

It can’t solve XOR problem even.
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Second Generation

Multi-Layer Perception : MLP

Make neurons deeper by make hidden layers of perception

Solve the Non-Linear problems with multiple linear classifier.

Too many parameters!!

Needs parameter controller.

Kim Woo Hyun Seminar September 4, 2019 6 / 42



Second Generation

Back-propagation

Feedback algorithm controls the weights of neural network.

i : input layer

h : hidden layer

o : output layer

wij : weight connected to the neuron i to j.
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Second Generation

out : Output value of a neuron.

in : sum of weighted output of connected neurons.
(in =

∑
w ∗ out)

t : Target value (Choose yourself!)

Sigmoid activation function. Ex) outh3 = σ(inh3) = 1
1+e−inh3

Kim Woo Hyun Seminar September 4, 2019 8 / 42



Second Generation

Error with Sum of square (Euclidean Distance)

E =
1

2
(t5 − outo5)2 +

1

2
(t6 − outo6)2

We want to see how much each weights influence to E ⇒ Calculate ∂E
∂wij

Example) Calculate ∂E
∂w35

with Chain-rule

∂E

∂w35
=

∂E

∂outo5
∗ ∂outo5
∂ino5

∗ ∂ino5
∂w35
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Second Generation

First,

∂E

∂outo5
=

∂

∂outo5

[
1

2
(t5 − outo5)2 +

1

2
(t6 − outo6)2

]
= outo5 − t5

Second,
∂out05
∂ino5

=
∂σ(ino5)

∂ino5

Kim Woo Hyun Seminar September 4, 2019 10 / 42



Second Generation

The sigmoid function σ(x) is

σ(x) =
1

1 + e−ax

The differential of sigmoid σ(x)

σ′(x) =
ae−ax

(1 + e−ax)2

= a
1

(1 + e−ax)

e−ax

(1 + e−ax)

= a
1

(1 + e−ax)

(
1− 1

(1 + e−ax)

)
= aσ(x)(1− σ(x))
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Second Generation

First,

∂E

∂outo5
=

∂

∂outo5

[
1

2
(t5 − outo5)2 +

1

2
(t6 − outo6)2

]
= outo5 − t5

Second,

∂out05
∂ino5

=
∂σ(ino5)

∂ino5
= σ(ino5)(1− σ(ino5)) = outo5(1− outo5)
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Second Generation

First,

∂E

∂outo5
=

∂

∂outo5

[
1

2
(t5 − outo5)2 +

1

2
(t6 − outo6)2

]
= outo5 − t5

Second,

∂out05
∂ino5

=
∂σ(ino5)

∂ino5
= σ(ino5)(1− σ(ino5)) = outo5(1− outo5)

Third,
∂ino5
∂w35

=
∂(outh3 ∗ w35)

∂w35
= outh3

Finally,
∂E

∂w35
= (outo5 − t5)(1− outo5)outo5outh3

Beautifully, all parameters are already calculated and what we have to
do is easy math.
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Second Generation

Then, how to update weights?

w := w − r∂E
∂w

, r is constant called learning rate.

So, updated w35 is

w35 := w35 − r(outo5 − t5)(1− outo5)outo5outh3

This method called Gradient descent.
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Second Generation

Gradient descent

Simply, moving to orthogonal direction from contour line.

Why the direction to orthogonal? At minimum point of f(x,y),

∇f(x, y) =

(
∂f

∂x
,
∂f

∂y

)
= 0

Assume direction of contour line is (a, b). Then using Tayler series,
derive orthogonal direction by linearize the contour line.

f(x1 + a, y1 + b) ' f(x1, y2) +
∂f

∂x
a+

∂f

∂y
b+ . . .

The condition of (a, b) that minimize error is

∂f

∂x
a+

∂f

∂y
b = 0
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Second Generation

If a = ∂f
∂y and b = −∂f

∂x .

∂f

∂x
a+

∂f

∂y
b =

∂f

∂x

∂f

∂y
+
∂f

∂y
(−∂f
∂x

) = 0

In addition, the inner product of gradient and (a,b) is

(∇f(x, y)) · (a, b) =

(
∂f

∂x
,
∂f

∂y

)
·
(
∂f

∂y
,−∂f

∂x

)
= 0

It means the vector orthogonal to contour line is gradient itself. And if
we track the gradient until it is 0, we can find minimum point.

*Caution it can be a saddle point not minimum but I don’t want to
discuss in this time because I don’t know.
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Second Generation

Problems

Gradient descent is bad at non-convex function, but sigmoid is
non-convex function.

σ′′(x) = a2σ(x)(1− σ(x))(1− 2σ(x))

a2σ(x)(1− σ(x)) ≥ 0 but − 1 ≤ 1− 2σ(x) ≤ 1

Cost of back-propagation is Big.

Vanishing Gradient Problem.
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Second Generation

Cost of back-propagation.

Cost is big at shallow layer.

For example,
∂E

∂w13
=

∂E

∂outh3
∗ ∂outh3
∂inh3

∗ ∂inh3
∂w13

...

= [(outo5 − t5){outo5(1− outo5)}w35 + (outo5 − t5){outo6(1− outo6)}w36]

∗(1− outh3) ∗ outh3 ∗ outi1
Of course! since it is chain-rule algorithm, it is easier than looks like.
However if we have very big network?
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Second Generation

Vanishing Gradient Problem

Because of sigmoid function, gradient is going to 0 while repeat
Back-propagation.
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Thrid Generation

Rectified Linear Unit : ReLU

Convex : good at gradient descent.

Cost of Back-propagation is decrease. (since f ′(x) = 1 or 0 always)

Safe from Vanishing Gradient Problem

All problems are from bad activation function.
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Thrid Generation

Notice at gap between tanh and ReLU.
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Section 2. Convolutional Neural Network

Convolution layer

ReLU layer

Pooling layer

Fully Connected layer
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Convolution layer

2D Convolution

Nothing specially different from 1D convolution.

Input size = 7x7x1

Filter size = 3x3

The number of filter = 1

Stride = 1
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Convolution layer

What is the filter do?

Assume weights are already trained.

Curve detection filter and its visualization.
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Filter

If Original image has similar shape at part, the result of Mult and Sum
has a large number.
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Filter

In contrast, If not, the result has a small number.

Trained filter can give a score for which feature exist or not!!
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Filter

Each score is grouped together and forms layer by convolution.
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Padding

Attach zeros around the layer. (Zero-padding)

Prevent from size decreasing while convolution.

To catch the features at edge more detail.
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Convolution layer

Convolution

W = width, H = Height, D = Depth, P = Padding, S = stride.
F = Filters W and H, N = Number of filters.

(6+1)x(6+1)x3 input
Two 3x3x3 filters
⇒ Two output with 3x3x2

W2 = W−F+2P
S + 1 =

6−3+2∗1
2 + 1 = 3

H2 = H−F+2P
S + 1 =

6−3+2∗1
2 + 1 = 3

D2 = N = 2 (Depth is same
with Number of filters)
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ReLU layer

Zero OR Itself.

Used to give Non-linearity and
threshold.

No parameter. No size change.
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ReLU layer

Why we have to give a Non-linearity.

Experimental result is given.

With Image.net classification test.
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Pooling layer

Usually, using Max-Pooling. (If higher value is important)

No depth change.

Reduce Complexity!!!!!!(Down-sampling) 1
4 = 75% reduced.

Not Recessary. (But Recommended)

W2 =
W − F
S

+ 1 =
224− 2

2
+ 1 = 112
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Fully Connected layer

Make 2D layer to 1D line layer (Make layer to vector.)

Used to compare with target.

Making method is not only one.
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Section 3. Painting Style Transfer

VGGnet

Algorithm and Loss function

Result
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VGGnet

Fconv = 3 (3 ∗ 3 ∗D), Sconv = 1, Padding = 1

FPool = 2 (2 ∗ 2 ∗D), Spool = 2

W − Fconv + 2P

Sconv
+ 1 =

224− 3 + 2 ∗ 1

1
+ 1 = 224

W − Fconv

Spool
+ 1 =

224− 2

2
+ 1 = 112
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Painting style transfer

Weights must be trained already.

a = style image, p = content image

x = generated image.

Kim Woo Hyun Seminar September 4, 2019 36 / 42



Painting style transfer

Nl = Number of feature maps of lth layer

Ml = Size of feature map of lth layer

F l ∈ RNl∗Ml

F l
ij is the activation of the ith filter at position j in layer l

P l
ij is same with F l

ij but it is from content image.(conv4 2)

Lcontent(~p, ~x, l) =
1

2

∑
i,j

(F l
ij − P l

ij)
2.

So this loss function want to minimize distance of each value of same
position between content layer and generate layer.
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Gl ∈ RNl∗Nl

Gl
ij is the inner product between the vectorized feature maps i and

j in layer l (Gram matrix of style layer)

Gl
ij =

∑
k

F l
ikF

l
jk

Al
ij is same with Gl

ij but it is from content image.

El =
1

4N2
l M

2
l

∑
i,j

(Gl
ij −Al

ij)
2

Lstyle(~a, ~x) =

L∑
l=0

wlEl

They have thought the style information is hide on correlation but I
can’t understand.
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Painting style transfer

The differential of each loss function are

∂Lcontent
∂F l

ij

=

{
(F l − P l)ij if F l

ij > 0

0 if F l
ij < 0,

∂El

∂F l
ij

=

{
1

N2
l M

2
l

((F l)T(Gl −Al))ji if F l
ij > 0

0 if F l
ij < 0.

And the total loss is

Ltotal(~p,~a, ~x) = αLcontent(~p, ~x) + βLstyle(~a, ~x)

α and β are learning rate.
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~x := ~x− λ∂Ltotal
∂~x

λ is learning rate.

At first, ~x is white noise image.

Not learning weights, learning ~x!!!!
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Result

+
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Bonus

Thank you!
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