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Abstract

The lecture notes are based on the number theory topics course on 3
Feb, 2016.

1 modular forms of half integral weights

Let Γ ⊂ SL2(Z) be a finite index subgroup. Let k be an integer. Recall a
weight k, level Γ modualr form is a holomorphic function on the upper half
plane satisfying the funcitonal equation: f(aτ+b

cτ+d ) = (cτ + d)kf(τ) for γ ∈ Γ

Definition 1.1. Half integral weight modular forms are holomorphic functions
on the upper half plane with the modified functional equation: f(γτ) = ε(γ)(cτ+
d)(k/2)f(τ) for γ ∈ Γ where ε is some root of unity and the square root is chosen
in some half plane.

Example 1.2. θ(τ) =
∑
exp(2πin2τ)

Γ(8)=congruence subgroup mod 8, then θ(γ(τ)) =

{
θ(τ) c = 0

( cd )(cτ + d)1/2θ(τ) c > 0

where ( cd ) is the Legendre symbol.

Exercise 1.3. For all N, there exist γ ∈ Γ(N), such that the Legende symbol

( cd ) = −1 for γ =

(
a b
c d

)
For integral weight forms the transformation law is simple: j(γ, τ) = (cτ+d)k

then j(γ1γ2, τ) = j(γ1, γ2τ)j(γ2, τ) so j(γ, τ) is a multiplier system.
But (cτ + d)1/2 is not a multiplier system.

2 The metaplectic group

Definition 2.1. Mp2(R) = {(g, φ)|g ∈ SL2(R), φ : H 7→ C, φ2 = cτ + d}

We see Mp2(R) has a natural covering map to SL2(R). Mp2(R) is a Lie
group but not the real points of an algebraic group; in particular it cannot be
realised by a matrix representation.

The group law is given by:
(g, φ) ∗ (g′, φ′) = (gg′, τ 7→ φ(g′τ)φ′(τ))
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Recall the θ function satisfies some functional equation. This means the
factor of automorphy forms a multiplier system. This fact is equivalent to:

The covering map Mp2(R) 7→ SL2(R) splits on Γ(8) with the splitting given
by ( cd )(cτ + d)1/2

Remark 2.2. The way to prove this is indeed a multiplier system: either use
the fact that the theta function is nonzero, or use quadratic reciprocity.

3 Congruence subgroup problem for SLn

Question: if Γ ⊂ SL(OK) has finite index, where K is a number field, is Γ a
congruence subgroup?

Here the congruence subgroup means the coefficients of the matrix equals
the identity matrix mod the ideal (n).

Example 3.1. For SL2(Z), the answer is no.
Take Γ ⊂ SL2(Z) small enough so that Γ is not torsion free. Then Γ is a

free group, so there is a surjection Γ 7→ Z.
Let Γ̂ = lim←−Γ/Υ Υ has finite index in Γ.

Let Γ̄ = lim←−Γ/Γ(n).

The hom from Γ to Z extends to Γ̂ 7→ Ẑ.
Γ̄ is the closure of Γ in SL2(Af ).
Since SL2 is semisimple, the commutator map is surjective, [sl2, sl2] 7→ sl2.
So [Γ̄, Γ̄] is open in SL2(Af ), since Γ̄ is open in SL2(Af ). So [Γ̄, Γ̄] has

finite index in Γ̄.
Hence there is no hom Γ̄ 7→ Ẑ apart from 0.
There is 1 7→ C 7→ Γ̂ 7→ Γ̄ 7→ 1.
C is called the congruence kernel.

Theorem 3.2. The theorem of Bass-Milnor-Serre says that if n is greater or
equal to 3, and the number field K has a real place, then every subgroup of finite
index in SLn(OK) is a congruence subgroup.

If K is totally complex there will be a noncongruence subgroup.
Let K be totally complex, and contains an n-th root of unity. We can define

the n-th power Legendre symbol on K, as follows:
Let a ∈ K, p=prime ideal in OK , p does not divide na, then

a
Np−1

n =some n-th root of unity mod p.
Define the Legendre symbol (ap ) to be the n-th root of 1.
For a general ideal coprime to na, define the Legendre symbol by the product

law.
Define Γ(n2) to be the congruence subgroup in SL2(OK) mod the ideal (n2).
Define a map κ : Γ(n2) 7→ µn(
a b
c d

)
7→

{
( cd ) c 6= 0

1 c = 0

Theorem 3.3. Kubata: κ is a hom, and its kernel is a noncongruence subgroup.

Exercise 3.4. Prove this.
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Bass-Milnor-Serre extended the κ to SLm(OK , n
2).

κ gives an isomorphism between the congruence kernel and µn as long as n
is the total number of roots of unity in K.

This means every subgroup of finite index in SLm(OK , n
2) contains some

Γ(N) ∩ ker(κ). (If either m is at least 3 or [K:Q]) is at least 4).

Remark 3.5. Kubata’s exercise is equivalent to the reciprocity formula for the
Legendre symbol in K, ie the Artin reciprocity law for Kummer extensions of K.

4 Digression on K theory

Before going on, define the K2 group of a field. Let K be any infinite field.
The group SLm(K) is perfect for m at least 3, meaning it is equal to its own
commutator subgroup.

Hence SLm(K) has a universal central extension.
1 7→ K2(K) 7→ Stm(K) 7→ SLm(K) 7→ 1
Here K2(K) is defined to be the kernel. It does not depend on m as long as

m is at least 3.
We recall what it means to be a universal central extension: for any Abelian

group A, the central extensions of the form
1 7→ A 7→? 7→ SLm(K) 7→ 1
are in bijective correspondence with the hom set
Hom(K2(K), A)
where the correspondence is given by the obvious morphism of extension

sequences.
For a field K, the group K2(K) is calculated by Matsumoto as follows (giving

a presentaion of K2(K)):
K2(K) = K∗ ⊗Z K

∗/ < a⊗ 1− a, a ∈ K \ {0, 1} >
We will write {a, b} for the image of the tensor a⊗ b in K2(K).

Remark 4.1. In terms of matrices this means:

[ ˜diag(a, a−1, 1, . . . , 1), ˜diag(b, b−1, 1, . . . , 1)] ∈ K2(K)
Notice we need at least 3*3 matrices for this to make sense. The ˜means

taking the preimage in Stm(K).

We also get an extension sequence for SL2:
1 7→ K2(K) 7→ something 7→ SL2(K) 7→ 1
by taking the middle term to be the preimage of SL2(K) in St3(K).
This extension is easy to describe: here is a inhomogeneous 2-cocycle.
σ(g, h) = {X(gh)/X(g), X(gh)/X(h)}, g, h ∈ SL2(K)

X(

(
a b
c d

)
) =

{
c c 6= 0

d c = 0

This satisfies the cocycle relation.
σ(g1g2, g3)σ(g1, g2) = σ(g1, g2g3)σ(g2, g3)

Remark 4.2. The cocycle condition is equivalent to the associativity of the
group law on SL2(K)×K2(K).

Exercise 4.3. Show σ is a 2-cocycle. (Need properties of {a, b}): the bilinearity
of the tensor and the relation {x, 1− x}) = 1 for x 6= 1.
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5 Hilbert symbol, metaplectic group again

Let Qp=either a p-adic field or the real numbers. Define for a, b ∈ Qp

(a, b)p =

{
1 ax2 + by2 = 1has a solution in Qp
−1 if not

For the real number case,

(a, b) =

{
1 a > 0 or b > 0

−1 a, b < 0

The (a,b) is called the Hilbert symbol and it satisfies the bilinear relations
and the property that (x, 1− x) = 1 for x 6= 1.

In other words the Hilbert symbol is a hom K2(Qp) 7→ {1,−1}. In fact it is
the only nontrivial such.

For the real number case we get a central extension of SL2(R) which repro-
duces our Mp2(R). This is a unique connected double cover.

Note: if G=Lie group, then G is homotopic to the maximal compact sub-
group. In the case of SL2(R), the maximal compact subgroup is the circle, so
the first fundamental group is Z, hence there is a unique connected double cover.

The quadratic reciprocity can be stated as:
a, b ∈ Q∗,

∏
p prime or infinity (a, b)p = 1

For each prime we have a central extension

1 7→ µ2 7→ ˜SL2(Qp) 7→ SL2(Qp) 7→ 1
defined by the relavent two-cycle σp.
We can put these together to obtain an adelic version:

1 7→ µ2 7→ ˜SL2(A) 7→ SL2(A) 7→ 1
where σA =

∏
σ′p, and σ′p is cohomologous to σp.

By the Hilbert symbol version of the reciprocity law, the cocycle σA splits
on SL2(Q).

It turns out if p is odd, then σp splits on SL2(Zp) and σ2 splits on SL2(Z2, 4).
σA will split on U =

∏
podd SL2(Zp)× SL2(Z2, 4).

Now on Γ(4) we have two different splittings of almost the same extension
(the difference between the two extensions is σ∞).

If we divide one splitting by another, we get a map κ : Γ(4) 7→ µ2. If these
were two different splittings of the same cocycle, κ would be a hom. But if they
are not, then κ is a splitting of σ∞), ie, σ∞(g, h) = κ(g)κ(h)/κ(gh).

Remark 5.1. This is how we show κ(γ)(cτ +d)1/2 is a multiplier system. And

when we work out what κ is, we get κ(

(
a b
c d

)
) = ( cd )

Example 5.2. If K is totally complex, then
SL2(K∞) = SL2(C)N ,K∞ = K ⊗Q R
SL2(C) is simply connected, ie, it has no nontrivial covering groups. Com-

plex Hilbert symbols are 1.
So the extension
1 7→ µn 7→ ˜SL2(A) 7→ SL2(A) 7→ 1
splits on SL2(K) by reciprocity law, and also splits on U × SL2(K∞).
Γ(n2) = SL2(K) ∩ (U × SL2(K∞)).
On Γ(n2) we have two splittings of the same extension.
Dividing one extension by another, we get a hom κ : Γ(n2) 7→ µn.
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This is exactly the same κ we had before. ker(κ) is a noncongruence sub-
group.

Remark 5.3. metaplectic forms are automorphic forms on ˆG(A) for any re-
ductive G over a number field.
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