
Tecnológico de Monterrey

Operating Systems Lecture

(TC2008)

Modifying Linux Kernel

Authors:

Adair Ibarra Bautista

Oscar Arturo Zapata
Buenrostro

Professor:
Victor Rodŕıguez Bahena

Abstract
In this document we will focus on modifying the Linux Kernel through memory and

scheduler parameters. The main objective is to study the performance of a computer
during the execution of AIO-Stress Benchmark. It was necessary to run the test several
times since three of the parameter mentioned in this project were modified 5 times. After
completing the test, the results were displayed on graphs, showing that all the variables
have a noticeable influence on the performance of the computer.

1

Contents

1 Introduction 3

2 Theoretical Framework 3
2.1 Real time policies . 3

2.1.1 SCHED-FIFO policy . 3
2.1.2 SCHED-RR policy . 3

2.2 Scheduler tuning . 3

3 Objective 4

4 Methodology 4
4.1 Swappiness . 5
4.2 Latency . 5
4.3 Runtime . 5

5 Results 5
5.1 Swappiness . 5
5.2 Latency . 6
5.3 Runtime . 7

6 Conclusion 7

2

1 Introduction

The AIO-Stress Test is a simple workload
generator for systems. It imposes a config-
urable amount of CPU, memory, I/O, and
disk stress on the computer. This test al-
lowed us to determine which parameter has
a greater influence on the performance of
the computer and helped us to define how
the computer behaves under specific circum-
stances.

The purpose of this paper is to present
a case study to explore the benefits or dis-
advantages of modifying kernel and mem-
ory parameters of the scheduler (commonly
known as ”scheduler tuning”). In order to
accomplish this, we will use an AIO Stress
tool for our benchmarks and experiments

2 Theoretical Framework

Scheduling policies are divided into two ma-
jor categories:

• Real time policies

1. SCHED-FIFO

2. SCHED-RR

• Normal policies

2.1 Real time policies

Real time threads are scheduled first, and
normal threads are scheduled after all Real-
time threads have been scheduled. The Real
time policies are used for time-critical tasks
that must complete without interruptions.
[1]

2.1.1 SCHED-FIFO policy

This policy is also referred to as static pri-
ority scheduling, because it defines a fixed
priority (between 1 and 99) for each thread.

The scheduler scans a list of SCHED-FIFO
threads in priority order and schedules the
highest priority thread that is ready to run.
This thread runs until it blocks, exits, or is
preempted by a higher priority thread that
is ready to run.

In the Linux kernel, the SCHED-FIFO
policy includes a bandwidth cap mecha-
nism. This protects Real time applica-
tion programmers from Real-time tasks that
might monopolize the CPU. [1]

2.1.2 SCHED-RR policy

SCHED-RR is a round-robin variant of the
SCHED-FIFO policy. SCHED-RR threads
are also given a fixed priority between 1 and
99. However, threads with the same prior-
ity are scheduled round-robin style within a
certain quantum, or time slice.

2.2 Scheduler tuning

The scheduler offers a number of parameters
which allow to tune its behavior to actual
needs:

• sched rt runtime us : The maximum CPU
time that can be used by all the real-time
tasks (1 second by default). When this
amount of time is used up these tasks
must wait for sched rt period us before
the are allowed to be executed again. [2]

• sched rt period us : The scheduler waits
this amount of time (0.95 s by default)
before scheduling any of the real-time
tasks again. [2]

• sched min granularity ns : This parame-
ter decides the minimum time a task will
be be allowed to run on CPU before be-
ing pre-empted out. By default, it is set
to 4ms. So by default, any task will run
at least 4ms before getting pre-empted
out. [3]

3

• sched latency ns : This parameter, to-
gether with sched min granularity ns, de-
cides the scheduler period, the period in
which all run queue tasks are scheduled
at least once. [3]

• sched migration cost ns : Determines how
long a migrated process has to be run-
ning before the kernel will consider mi-
grating it again to another core.

• sched nr migrate: This option can be set
to specify the number of tasks that will
move at a time.

• sched rr timeslice ms : Threads that have
the same priority are scheduled round-
robin style within a certain time slice.
You can set the value of this time slice
in milliseconds with the sched rr times-
lice ms.

• Swappiness : Is a parameter that controls
the relative weight given to swapping out
runtime memory, as opposed to dropping
pages from the system page cache. Swap-
piness can be set to values between 0
and 100 inclusive. A low value causes
the kernel to avoid swapping, a higher
value causes the kernel to try to use swap
space.

3 Objective

The objective of this project is to ”get
our hands dirty” modifying real variables of
a real operating system and see how this
changes actually affect the performance of
a given process or service of the operating
system.

Along all this, it is important to know
how benchmarks are done and how to read
the results, including taking decisions about
the best values that can improve the oper-
ating system.

4 Methodology

In this project we modified three dif-
ferent scheduler variables to observe the
effect this variables have performance-
wise. The variables we changed are:
vm.swappiness, kernel.sched-latency-ns and
finally, kernel.sched-rt-runtime-us.

The benchmark we ran to test this values
is phoronix AIO-Stress.

The process followed for this tests was
giving five different values to each variable,
leaving all the scheduler variables with their
default values (even the ones being evalu-
ated in this project) and running the test.
Once finished with the five tests, we ana-
lyzed the graphs produced by phoronix.

The detailed information about the val-
ues given to each variable will be seen in the
following sections.

All this tests were performed in a laptop
computer. The technical specifications are
shown in Figure 1.

Figure 1: Technical specifications of the
computer

4

4.1 Swappiness

This was the first variable we modified. We
changed the value of the variable and then,
ran the test. We repeated this process five
times.

The default value of this variable is 60.
The possible values for the scheduler swap-
piness ranges from 0 to 100.

Maintaining the default values for the
scheduler variables, we gave to the swappi-
ness the values seen in Table 1.

Value
20%
40%
60%*
80%
100%

Table 1: Values given to the swappiness
variable

4.2 Latency

Returning the swappiness variable to its de-
fault value, we then changed the values of
the latency time.

The default value for this variable is
24ms.

The values given to this variable for the
AIO-Stress benchmark can be seen in Table
2.

Value
6ms
12ms
24ms*
48ms
72ms

Table 2: Values given to the latency variable

4.3 Runtime

The last variable we changed is the runtime
variable. The values this variable can take
range from 0 to 1’000,000 [µs]. The default
value is 950,000µs.

The values that were used for the test are
shown in 2

Value
0.01s
0.25s
0.50s
0.75s
0.95s*

Table 3: Values given to the runtime vari-
able

5 Results

Once done with all the benchmarks,
phoronix helped graphing the results and
giving some interesting overviews about the
tests.

Having these graphs, and analyzing them
we couldn’t find any patterns about the re-
sults. We found out that there is no sure
result about this test.

In the following sections the results will
be explained along with their graphs and a
result overview provided by phoronix. Since
we are using the AIO-Stress benchmark it
is important to know that all the results are
given in MB/s.

For all the results in this test, the greater
the number is, the better.

5.1 Swappiness

In Figure 2 we have a bar chart represent-
ing the performance of the computer in this
benchmark for all the different runs. This

5

chart is quite useful given that you can see
more easily the difference between each run.

With the default value of swappiness
(60), we get a data transmission rate of
381.88MB/s.

Figure 2: Bar chart of performance for
swappiness variable.

In Figure 3 we can see that the best
variable value for swappiness is 40, giving
a transmission rate of 386.20MB/s. While
the worst value is a swappiness of 20 with a
transmission rate of 369.41, 12.47MB/s less
than the default value.

Recalling that the swappiness of the
scheduler is ”how much” swapping between
the ROM and RAM is performed between
processes, we can get from this test that
a good swapping percentage is 40%. This
means, trying to maintain as much infor-
mation possible in RAM, in order to avoid
access to ROM but not too much informa-
tion.

Figure 3: Result overview of different runs.

5.2 Latency

Regarding to latency, at first, we were think-
ing that the results of this test were going
to be quite obvious. Of course with less la-
tency everything would work better, right?

Wrong.

With a default latency value of 24ms, we
started the benchmark. Later on we started
increasing this value just to prove that our
theory was right. The surprise came when
we started to decrease this value. In Figure
4 we can see the bar chart for this test, Even
if we decreased the value of latency it didn’t
improve.

Figure 4: Bar chart of performance for la-
tency variable.

In Figure 5 we can see that the best re-
sult (and for a big difference) is the default
value of 24ms. The second best is a value of
48ms with a difference of 31.52MB/s.

Figure 5: Result overview of different runs.

So with the results from this test, we

6

realize that the system actually needs la-
tency to be able to work properly or with a
good performance. And that not necessarily
has to be the smallest number possible, but
just the right number that allows the system
to work as it should. Maybe, reducing the
delay actually makes some processes slower
and that impacts to the data transmission
rate.

5.3 Runtime

Finally, we put to test the kernel.sched-rt-
runtime-us variable. This test is the one
that generated a smaller difference between
the values given to the variable;but still,
we found a value that improves the perfor-
mance.

Figure 6: Comparison graph of perfor-
mance obtained with each test run.

The improvement in with this variable,
was only of 3.28MB/s. To get this improve-
ment, we changed from the default run-
time value (0.95s) to 0.50s. We also found
another value (0.25s) that performs better
than the default, this value gives an im-
provement of 0.58MB/s.

The worst value in this test was 0.10s.

Figure 7: Result overview of different runs.

From this last test we get that we can
reduce almost half a second the time that
we are letting real-time processes to be exe-
cuted in the CPU. For the AIO-Stress test,
we give this processes more time than they
need, so reducing this variable improves the
data transmission.

6 Conclusion

It is very important to keep in mind that
these results are only for the AIO-Stress
benchmark. These results doesn’t mean
that changing the values of the variables for
the ones we got, will improve the operative
system. These results are only dependent of
I/O operations.

This analysis is very useful for very spe-
cific situations where you want a specific
process or service of the operative system
to be faster either in a server, a micro-
controller or even a personal computer. For
this situations, you will have to look for the
benchmark related to the service you want
to improve and perform several test runs
with a lot of different values to get the opti-
mum combination of values in the variables.

Although some improvements can be not
very significant, for a purpose-specific appli-
cation, a difference of 3.28MB/s can be a
transcendental difference.

For future work, it would be interesting
to keep looking for the best value for the
different variables, considering that in this

7

tests we left a big gap between each test run.
However We have a good reference to start
in order to keep improving data transmis-
sion for this benchmark.

Another interesting thing that could be

done is analyze if the individual values that
we got, actually improve when they are all
put together. Or if the combination of the
values that we got is worse than the default
values.

8

References

[1] (2016). CPU Scheduling. https://access.redhat.com/documentation/en-US/Red Hat
Enterprise Linux/6/html/Performance Tuning Guide/s-cpu-scheduler.html

[2] Kobus, J. Szklarski, R. (2016). Completely Fair Scheduler and its tuning (1st ed.).
https://www.fizyka.umk.pl/∼jkob/prace-mag/cfs-tuning.pdf

[3] Linux Scheduler. (2012). Oakbytes. https://oakbytes.wordpress.com/2012/06/06/
linux-scheduler-cfs-and-latency/

9

 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/s-cpu-scheduler.html
 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/s-cpu-scheduler.html
https://www.fizyka.umk.pl/~jkob/prace-mag/cfs-tuning.pdf
https://oakbytes.wordpress.com/2012/06/06/linux-scheduler-cfs-and-latency/
https://oakbytes.wordpress.com/2012/06/06/linux-scheduler-cfs-and-latency/

	Introduction
	Theoretical Framework
	Real time policies
	SCHED-FIFO policy
	SCHED-RR policy

	Scheduler tuning

	Objective
	Methodology
	Swappiness
	Latency
	Runtime

	Results
	Swappiness
	Latency
	Runtime

	Conclusion

