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ABSTRACT
The purpose of this report is to explain how – by leveraging
on the capabilities of the amazon web services – it is pos-
sible to manage and process a set of data that is too large
and complex for traditional data processing techniques and
technologies.
The report discusses the implementation of a set of services
– from the retrieval of external data to its transformation,
through the storage on non relational databases and finally
the parallel computation on an external cluster – meant for
the management of discographic information in order to eas-
ily join different data in an agile manner and subsequently
perform additional processing based on the joined output.
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1. INTRODUCTION
With the increase in the amount of data that is available
through the internet and the expectations that today’s users
have when interacting with web services, today’s developers
have to deal with the issues of managing and processing huge
amounts of data in an amount of time that is acceptable by
the average user.
In order to face such a cumbersome task, different solutions
have been developed – and are currently being developed –
in the field of distributed computing for the purpose of dis-
tributed storage and distributed processing. Such solutions
allow developers to rely on cheap computer clusters built
with commodity hardware thus empowering developed web
services with relatively cheap, scalable computational power
and highly available data stores.

For the purpose of this report – specifically the retrieval
and parsing of large discographic datasets to be stored on
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a non-relational, highly available data store and subsequent
computation of parallel joins using the MapReduce program-
ming model – many different technologies have been taken
into consideration.
Compared to other solutions, given the fact that it is well es-
tablished in the big data space and with the additional ben-
efit of having a consistent community of developers working
with it, Hadoop has been chosen as the go to reliable, scal-
able, distributed computing framework for this project.
The next consequential choice that a developer faces is whet-
her or not to install, configure and manage his own Hadoop
cluster on one or more local machines, with the resulting
parallelization limitations, or instead rely on external cloud
computing platforms such as Amazon Web Services, Google
Cloud or Microsoft Azure.
An additional option is also available which consists of down-
loading one of the QuickStart Virtual Machines made avail-
able by Cloudera which comes pre-installed with all the soft-
ware that is needed for the purpose of this project thus by-
passing all the issues related with the setup and configura-
tion of the different tools required.

After an attentive evaluation of all the options, the choice
fell on Amazon Web Services and more specifically on the
Elastic MapReduce(EMR) service they offer. Arguably, it
provides the best trade-off between ease of use and – by
allowing computations to be performed on real clusters of
multiple machines – suitability towards this report’s goals.
Consequently, because of the ease in which other Amazon
Web Services can be made to interact with EMR (consider-
ing also the availability of a free usage tier), the additional
services and technologies needed have been selected from
those included in the Amazon Web Services portfolio.

Following is a brief description of all the services and tech-
nologies that have been used throughout this project.

1.1 Discogs
Discogs is a website and database of information about audio
recordings, which includes both commercial and off-label re-
leases. It is especially known as the largest online database
of electronic music releases, in particular on vinyl media,
currently containing over 6 million releases by 4 million
artists. The site’s original goal was to build the most com-
prehensive database of electronic music, organized around
the artists, labels, and releases available in that genre. Since
then, it has expanded to include all the other genres.
In 2007, Discogs data became publicly accessible via a REST-



ful, XML-based API, but did not allow anyone to alter the
data. On June 2011 version 2 of the API was released
and the default response was changed from XML to JSON.
Monthly data dumps are also provided in XML format.

1.2 Amazon Web Services
1.2.1 Amazon SimpleDB

Amazon SimpleDB is a highly available and flexible non-
relational data store that offloads the work of database ad-
ministration, so to let users focusing on application devel-
opment without worrying about infrastructure provisioning,
software maintenance, schema and index management, or
performance tuning.
It automatically creates and manages multiple geographi-
cally distributed replicas of user data to enable high avail-
ability and data durability. As an application evolves, users
can easily reflect these changes on the fly without worrying
about breaking a rigid schema or needing to refractor code.
It is also possible to choose between consistent or eventu-
ally consistent read requests, gaining the flexibility to match
read performance (latency and throughput) and consistency
requirements to the demands of the application.

1.2.2 Amazon S3
Amazon Simple Storage Service (Amazon S3), provides de-
velopers with secure, durable, highly-scalable object storage.
Amazon S3 comes with a simple web interface to store and
retrieve any amount of data from anywhere on the web. It
provides cost-effective object storage for a wide variety of
use cases including cloud applications, content distribution,
backup and archiving, disaster recovery, and big data ana-
lytics.

1.2.3 Amazon EC2
Amazon Elastic Compute Cloud (Amazon EC2) is a web ser-
vice that provides resizable compute capacity in the cloud.
It is designed to make web-scale cloud computing easier for
developers. Amazon EC2 reduces the time required to ob-
tain and boot new servernstances to minutes, allowing to
quickly scale capacity as computing requirements change.

1.2.4 Amazon EMR
Amazon Elastic MapReduce (Amazon EMR) is a web ser-
vice that makes it easy to quickly process vast amounts of
data. It simplifies big data processing, providing an Hadoop
framework running on the web-scale infrastructure of EC2
and Amazon S3. Users donâĂŹt need to worry about node
provisioning, cluster setup, Hadoop configuration, or clus-
ter tuning, and it is possible to provision one, hundreds, or
thousands of compute instances to process data at any scale.
Amazon EMR handles many big data use cases, including
log analysis, web indexing, data warehousing, machine learn-
ing, financial analysis, scientific simulation, and bioinformat-
ics.

2. OVERVIEW
Since the purpose of this project is to show how to manage
a large amount of discographic data, the first step consists
in finding a big dataset that provides such information. As
discussed, Discogs is not only one of the biggest database
of audio recordings currently available online but it also

gives the possibility to access data without any charge. Ac-
cess is provided either through their RESTful API (https:
//www.discogs.com/developers/) or monthly data dumps
(which are continuously uploaded at http://www.discogs.

com/data/).

The biggest limitation that a developer faces by using the
API is that requests are throttled by the server to 20 per
minute per IP address, making it impossible to download
a vast amount of data in a reasonable time. Monthly data
dumps instead provide all the information needed in just
a few XML files. For the purpose of this project only the
most recent information about artists (discogs_20150601_
artists.xml) and releases (discogs_20150601_releases.
xml) are meaningful, so other files will be ignored. The sizes
of these two files, in their decompressed form, are respec-
tively 755MB and 18.8GB.

Once downloaded, XML data needs to be cleaned and parsed
multiple times before it can actually be used to perform
any kind of operation involving the MapReduce framework.
The data workflow is depicted in Figure 1: XML files are
initially parsed in order to discard information which is ei-
ther irrelevant or redundant. Cleaned results are converted
into key-value form and continuously inserted into a Amazon
SimpleDB domains.

Amazon Elastic MapReduce requires the input of MapRe-
duce jobs to be stored inside the Amazon S3 Web Ser-
vice; hence, data needs to be extracted from SimpleDB and
cleaned again in order to be uploaded to S3. The easiest way
to do this is to read tuple by tuple the content of the sim-
pleDB domains and save the information in TXT file format.
Amazon EMR can then be adopted to perform MapReduce
operations on this input, provided that the source code of
the job is stored as a JAR in Amazon S3, alongside the input
files.

The first operation which is performed and discussed in this
report is the natural join of the two original files which were
downloaded from Discogs, namely artists and releases. The
purpose of this operation is to associate to every artist their
audio recordings, so to obtain a more exhaustive view of the
data. The output of the MapReduce job is automatically
stored into s3 in text format.
At this point, the joined view offers the possibility to per-
form more sophisticated operations such as counting the
number of releases per artist to find out which is the one
that has more albums to his name.

3. COMPUTING NATURAL JOIN
When processing large datasets the option of joining data
by a common key can be very useful, if not essential. There
is a straightforward way to join relations using MapReduce.
Of the existing join patterns, reduce-side joins are the easiest
to implement due to the fact that Hadoop sends identical
keys to the same reducer. The mapper only pre-processes
the tuples of the two datasets to organize them in terms of
the join key. To perform the join, the reducer simply needs
to cache a key from one of the datasets and compare it to
the incoming keys of the other. As long as the keys match,
we can join the values from the corresponding keys.

https://www.discogs.com/developers/
https://www.discogs.com/developers/
http://www.discogs.com/data/
http://www.discogs.com/data/
discogs_20150601_artists.xml
discogs_20150601_artists.xml
discogs_20150601_releases.xml
discogs_20150601_releases.xml


Figure 1: data workflow

More in detail, suppose relations R(A,B) and S(B,C) are
each stored in a different file. To join these relations, we
must associate each tuple from either relation with a key
that is the value of its B-component.

A map process will turn each tuple (a,b) from R into a key-
value pair with key b and value (a,R). Note that the relation
is included with the value, so that, in the reduce phase, the
matching is performed only on tuples from R with tuples
from S, and not on pairs of tuples from R or pairs of tuples
from S. Similarly, the map process turns each tuple (b,c) from
S into a key-value pair with key b and value (c,S).
For each value b the reduce process will be associated with
a list of pairs that are either of the form (a,R) or (c,S). The
output from this key and value list is a sequence of key-value
pairs, where The key is irrelevant. Each value is one of the
triples (a,b,c) such that (a,R) and (c,S) are on the input list
of values.

The same algorithm works if the relations have more than
two attributes. Relation A can be seen as a representation of
all the attributes in the schema of R but not S. B represents
the attributes in both schemas, and C represents attributes
only in the schema of S.

4. IMPLEMENTATION
A detailed explanation of how the project workflow works,
how it evolved, together with an explanation of the most
important issues and challenges encountered and related so-
lutions that have been implemented, is provided next.

4.1 From Discogs to SimpleDB
As can be seen in Figure 1, the data workflow starts from
http://www.discogs.com/data/. Discographic data, orga-
nized in the two XML file mentioned, are downloaded and
cleaned locally with a SAX parser. A SAX parser works
differently from a DOM parser, because it neither loads the
XML document into memory nor it creates the object rep-
resentation of the XML document; instead, the SAX parser

uses callback functions to inform clients of the XML docu-
ment structure. SAX parser are indeed essential to process
the large amount of data that this project requires.

Figure 2: snippet of discogs 20150601 releases.xml

It is important to note that, even though it is of no issue
for us to use the entire dataset, some data (such as the urls
that point to the Discogs website’s pictures) are discarded
during the parsing because they are of little interest for the
purpose of this report. For each artist the following infor-
mation is maintained: the artist’s name together with name
variations and aliases, an artist identificator, a description,
the list of groups to which the artist belongs and a set of urls
to exernal information about the artist (such as artists’ offi-
cial websites). An artist can also represent a musical group,
hence a list of members is associated to each record.
Each release contains an identifier, the release’s title, the
country of origin, the release date, the list of artists who con-
tributed to the release, information about genres and sub-

http://www.discogs.com/data/


genres, the complete tracklist, a list of official music videos,
and also references to the company and the release’s labels.
Often the list of artists associated to each release presents
duplicated information, but since the artists’id is used as the
join keys for the two domains this could negatively effect the
performance of the first MapReduce job (the one that joins
artists with releases); hence, duplicates are removed from
the lists of artists before they are inserted to SimpleDB.

All this information is fetched from the two XML files by ex-
ecuting the SAX parser, which creates a new item for each
artist or release encountered; all these items are then in-
serted into two SimpleDB domains, one for the artists and
the other for the releases. In order to increase the per-
formance, write requests to SimpleDB are performed using
batch requests, each of 25 generated items (the maximum
allowed for a batch write request).

Initially, when deciding which storage technology was best
for the project, the choice fell on DynamoDB. Since Dy-
namoDB provides more powerful features than SimpleDB
and is now considered the go to solution for most projects
(so much so that SimpleDB is not advertised anymore as an
Amazon Service and all the official tech support is outdated),
choosing it over SimpleDB was the natural choice. During
the initial development it quickly became clear that the very
peculiar way in which DynamoDB bills its customers based
on throughput (becoming very expensive when surpassing
the 25 read/write requests per second), rather than on stor-
age, not only limits the project’s potential but also slows the
achievement of its goals.
For those reasons the development rotated towards the older,
hidden, less powerful and less documented SimpleDB which
bills based on storage and doesn’t place on the developer
artificial throughput restrictions.

4.2 From SimpleDB to S3
Initially, for the sake of completeness, the objective was to
have the MapReduce job work with input retrieved directly
from and output written directly to SimpleDB. Despite great
effort, it soon became clear that this option is not supported
since Amazon does not provide developers with the libraries
needed to do this. It is instead possible to perform MapRe-
duce operations – from and to SimpleDB – by using Hive
and its underlying query language which can indeed be used
to perform MapReduce joins but it removes the developer’s
ability to implement and import custom Map and Reduce
operations.

Therefore, in order to perform our first MapReduce job us-
ing the Amazon Elastic MapReduce framework, data has
to be transferred from SimpleDB to Amazon S3. To do so,
we establish a connection with SimpleDB querying the two
tables; data is continuously parsed back into a string for
each record and subsequently printed to files (one record for
each row) in TXT format, again, one for the artists and one
for the releases. The two TXT files are then uploaded to
Amazon S3.

4.3 Elastic MapReduce
As hinted previously, in order to perform a customized Map-
Reduce job on Amazon EMR, a JAR file – which contains
the Java source code indicating how the job must be con-

Figure 3: snippet of releases data as parsed from
SimpleDB

figured and run – must be provided. The JAR contains the
Main, the Map and the Reduce class. The Main class is
responsible for specifying the format to be accepted as in-
put and the format to be produced as output which, in this
case, is set to text. Additionally, it is also responsible for
specifying which class must be used as Mapper and which
class as Reducer (in this case these are the Map and Reduce
classes available in the JAR), and it also accepts two string
inputs specifying the locations of the input files, which are
used during the cluster setup, and the desired location for
the output files.

The Map and Reduce classes are better explained with the
aid of Figure 4 which shows a diagram of the implemen-
tation that has been chosen for this MapReduce join job.
Highlighted in blue is the Map operation while in orange is
the Reduce operation.

Once the ResourceManager of the Hadoop cluster has as-
sumed the responsibility of distributing the software/ con-
figuration to the slaves, schedule and monitor the tasks,
and provide status and diagnostic information to the client,
chunks of data from the artists and releases input files are
distributed to the mappers. Representing these chunks,
shown as tables in the diagram, are extracts from the artists
and releases SimpleDB domains.

As said, each chunk’s text line corresponds to a single Sim-
pleDB tuple, so by analyzing them it is possible to under-
stand the damain of origin. Tuples coming from the artists
domain are turned by the mapper into key-value pairs, where
the key is the artistId and the value is the union of all the
other attributes. Tuples coming from the releases domain
instead have to be turned into multiple key value-pairs, as
many as the number of artists who contributed to the re-
lease. The artists attribute of this kind of tuples contains
the list of contributing artists’ identifiers; hence, each of
them has to be taken by the mapper as the key of a new
key-value pair, while the value is again the union of all the



Figure 4: diagram of a reduce-side MapReduce join

other attributes’ values.

Here ends the role of the mapper and the shuffle and sort op-
erations performed by the framework come into play. Iden-
tical keys are sent to the same reducer meaning that each
reducer will be assigned a list of values of both the artist’s
and the releases’ attributes.
Since the matching is performed only on tuples coming from
different domains, each reducer has to extract for each key
the value that represents the artist, which is unique, match-
ing it with all the other values given as input with the same
key. The output from this key and value list is a sequence
of key-value pairs, where the key is again the artistId and
the value the combined information about artist and corre-
sponding release. Again, an example of the output can be
seen in Figure 4: for the artist with key 55 the output con-
tains both the attributes of the artist and the attributes of
one of the releases associated with that artist (releaseId 31).

Once the reduce-side join is finished, the output can easily
be adopted as an input for another MapReduce job. In this
case, similarly to the join, a MapReduce job that counts the
number of releases for each artist has been implemented.
Additionally – given the fact that the job of finding the
highest number in a list cannot be parallelized – for the

sake of completeness, an extra mapping is performed which
naturally sorts the output by number of releases exploiting
the shuffle and sort phase, thus returning an ordered list
with the artist with the highest number of releases as the
last artist.

Figure 5: final output: artists with the biggest num-
ber of releases associated to them

An extra paragraph must be spent to highlight the issues
that arose during the first tests performed on the entire
dataset of both the artists and the releases. With such a big



amount of data being processed, some unexpected garbage
collection (GC) issues (GC overhead limit exceeded) caused
the interruption of the job. This issue is the result of the GC
trying to free memory but being pretty much unable to get
anything done. By default it happens when the JVM spends
more than 98% of the total time in GC and, when after GC,
less than 2% of the heap is recovered. The solution adopted
has been of rewriting the entire MapReduce job so as to re-
duce as much as possible the number of objects dynamically
allocated in memory.

5. PERFORMANCE EVALUATION
When creating a cluster on Amazon EMR, during the setup,
the following information must be provided:

• the directory location of the JAR file stored on S3;

• the Hadoop version to be used;

• the number of EC2 core instances;

• the EC2 instance type for both the master and the
cores;

• the S3 directory location of the files to be used as input;

• the S3 directory location in which to save the output.

Out of these, the ones that have an impact on the compu-
tation’s performance are the number of allocated EC2 in-
stances, the instance type and the size of the input data.
For all experiments, for both the master and the cores, the
instance type has been set to m1.medium which is equipped
with 1vCPU 3.75GB of memory and 410GB of storage. The
number of allocated EC2 instances has instead been changed
in different tests, in order to analyze the performance of the
job on various input sizes. The input size of the entire artists
dataset (1.13 GB) has not been reduced while the input size
of the releases has been increased little by little.

Figure 6: performance chart of 680MB releases
dataset performed with 1, 2 and 5-cores cluster

Figure 6 shows the time needed to perform the join beetwen
the artists and a small portion (680MB) of the releases; a
cluster composed by only a master node and a single core
node takes 27 minutes to complete the job, a cluster com-
posed of 2 cores takes 22 minutes and one composed of 5
cores takes 15 minutes. It is important to note that all
of these results (also those seen in Figure 7 and Figure 8)
include an initial provisioning of the EC2 instances and con-
figuration time of about 10 minutes, performed by Amazon
at each cluster launch.

Figure 7: performance chart of 3.75GB releases
dataset performed with 1, 2, 5 and 10-cores cluster

Figure 7 shows results obtained by a reduce-side join MapRe-
duce job working with a releases input of 3.75GB. In this
case, in addition to the other tests, also a 10-cores cluster
has been adopted to asses performances.

Figure 8: performance chart of 7.38GB releases
dataset performed with 1, 2, 5, 10 and 18-cores clus-
ter

Finally, the third chart (Figure 8) shows results obtained
with a releases input of 7.38GB (the entire releases dataset)
this time adding also a test case with a 18-cores cluster. The
joined output reaches in this case a size of 36.7GB.

With this joined data it is now possible to perform the sec-
ond MapReduce job, so to count the number of releases per
artist. A 5-cores cluster has been adopted to test the per-
formances of this operation, which ran for an hour.

In an ideal world, upgrading from a uniprocessor to an n-
multiprocessor should provide about an n-fold increase in
computational power. In practice this never happens be-
cause most of the computational problems cannot be ef-
fectively parallelized without incurring the costs of inter-
processor communication ad coordination. As can be seen
in the second and third charts (Figure 7 and Figure 8),
specifically the difference between the tests performed with
10 cores and those performed with 5 cores, by doubling
the computational power of the MapReduce jobs, the time
elapsed does not halves.
This kind of analysis is very important for concurrent com-
putation and it can be done using the Amdahl’s Law, which
captures the notion that the extent to which we can speed
up any complex job is limited by how much of the job must



be executed sequentially.

Define the speedup S of a job to be the ratio between the
time it takes one processor to complete the job versus the
time it takes n concurrent processors to complete the same
job; Amdahl’s Law characterizes the maximum speedup S
that can be achieved by n processors collaborating on an
application, where p is the fraction of the job that can be
executed in parallel. Assume that it takes normalized time
1 for a single processor to complete the job; with n con-
current processors, the parallel part takes time p/n and the
sequential part takes time 1-p. Overall, the parallelized com-
putation takes time:

S =
1

(1 − p) + p
n

Therefore, the obtained results have overall been satisfactory
and in accordance to Amdahl’s Law.

6. CONCLUSIONS
The purpose of this report can be considered reached. It
explains how, throughout the project, a very large disco-
graphic dataset has been retrieved and parsed in order to
be stored in the non-relational, highly available data store
SimpleDB. From SimpleDB, the data has been converted in
a format that is uploadable to S3 and is accepted as input
of the EMR join operation. Consequently, the output has
been used to perform two additional MapReduce operations
– though one is only used for sorting – with the goal of re-
trieving from the entire dataset the artist with the greatest

number of records associated to him.

The entire project involved many different Amazon Web Ser-
vices which are not included in the free tier. Luckily, upon
request, Amazon provides students with 35e to be spent on
their services.
The total bill for the entire project amounts to 36.14e with
a total amount of computational instance hours – excluding
learning, setup and failed tests – of 140.

Overall, the project has been of great interest and it proved
to be a great learning experience.
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