
IKE - An Interactive Tool for Knowledge Extraction

Bhavana Dalvi
Allen Institute for

Artificial Intelligence
bhavanad@allenai.org

Sumithra Bhakthavatsalam
Allen Institute for

Artificial Intelligence
sumithrab@allenai.org

Peter Clark
Allen Institute for

Artificial Intelligence
peterc@allenai.org

Abstract

Recent work on information extraction has
suggested that fast, interactive tools can be
highly effective; however, creating a usable
system is challenging, and few publically
available tools exist. In this paper we present
IKE, a new extraction tool that performs
fast, interactive bootstrapping to develop high-
quality extraction patterns for targeted rela-
tions, and provides novel solutions to these us-
ability concerns. In particular, it uses a novel
query language that is expressive, easy to un-
derstand, and fast to execute - essential re-
quirements for a practical system - and is the
first interactive extraction tool to seamlessly
integrate symbolic and distributional methods
for search. An initial evaluation suggests that
relation tables can be populated substantially
faster than by manual pattern authoring or us-
ing fully automated tools, while retaining ac-
curacy, an important step towards practical
knowledge-base construction.

1 Introduction

Knowledge extraction from text remains a funda-
mental challenge for any system that works with
structured data. Automatic extraction algorithms
(e.g., [3]) have proved efficient, but typically pro-
duce noisy results (e.g., the best F1 score for the
KBP slot filling task was 0.28, as reported in [3]).
Weakly supervised automatic bootstrapping meth-
ods [4, 7] are more precise in the initial bootstrap-
ping iterations, but digress in later iterations, a prob-
lem generally referred to as semantic drift.

More recently there has been work on more in-
teractive methods, which can be seen as a “machine

teaching” approach to KB construction [1, 2]. For
example, Soderland et al. [9] showed that users can
be surprisingly effective at authoring and refining
extraction rules for a slot filling task, and Freed-
man et al. [6] demonstrated that a combination of
machine learning and user authoring produced high
quality results. However, none of these approaches
have evolved into usable tools.

In this paper we present IKE, a usable, general-
purpose tool for interactive extraction. It addresses
the competing requirements of expressiveness, com-
prehensibility, and speed with a novel query lan-
guage based on chunking rather than parsing, and
is the first tool to seamlessly integrate symbolic and
distributional methods for search. A preliminary
evaluation suggests that relation tables can be pop-
ulated substantially faster with IKE than by manual
pattern authoring or using fully automated extraction
tools, while retaining accuracy, suggesting IKE has
utility for the task of knowledge-base construction.

2 Interactive Knowledge Extraction (IKE)

We first describe IKE’s architecture, and then a sam-
ple workflow using it.

IKE allows the user to create relation tables, and
populate them by issuing pattern-based queries over
a corpus. It also has a machine learning compo-
nent that suggests high-quality broadenings or nar-
rowings of the user’s queries. Together, these allow
the user to perform fast, interactive bootstrapping.

2.1 IKE Query Language

Central to IKE is the notion that an extraction pat-
tern can be treated as a search query over a corpus.

Figure 1: Use of set expansion to find and select vector-similar phrases in the corpus.

To make this operational, the query language must
be both comprehensible and fast to execute. To meet
these requirements, IKE indexes and searches the
corpus using a chunk-based rather than parse-based
representation of the text corpus. The query lan-
guage supports wildcards, window sizes, POS tags,
chunk tags, as well as reference to other predicate
tables already constructed. In particular, “capture
groups”, indicated by parentheses, instruct IKE to
catch the matching element(s) as candidate entries
in the table being populated. The query language is
presented by example in Table1.

2.2 Example Workflow
We now describe these features in more de-
tail by way of an example. Consider the task
of acquiring instances of the binary pred-
icate conducts(material,energy), e.g., con-
ducts(“steel”,“electricity”). In IKE, relations
are visualized as tables, so we treat this task as one
of table population. The user’s workflow can be
summarized as follows:

1. Define the types material and energy
2. Create a two-column table for conducts

ARG1	 conducts	 ARG2
ARG1	 melts	 ARG2	 TO
ARG2	 flows	 through	 ARG1
ARG1	 VB	 NN	 ARG2

Material,	 Energy
-‐
iron,	 electricity
water,	 heat
copper,	 heat
water,	 sound

…..

IKE query
suggest

O(10) seed
examples

Candidate patterns,
along with example instances

User
annotates
candidate
queries

Run
pattern
queries on
corpus

Material,	 Energy
-‐
copper,	 electricity

metal,	 sound
human	 body,	 electricity

plastic,	 electricity
…..

Candidate instances

Add positive
instances to
the set

Instance	
Set

+
+
+
-‐

User annotates
Candidate instances

+
-‐
+
-‐

Query	
Set

Figure 2: IKE interactive bootstrapping work-flow to create

Material-Conductivity table

3. Use a seed pattern, e.g., X:material conducts
Y:energy, to populate the conducts table with
pairs (X,Y)

4. Repeat:
(a) Use the ML-based query suggestor to find

additional patterns relating the Xs and Ys,
i.e., also expressing conducts.

(b) Use those additional patterns to further
populate conducts

This is the typical bootstrapping algorithm, here

Query Interpretation
the dog matches “the” followed by “dog”
”brown dog” matches the phrase “brown dog”
NP grows an NP followed by “grows”
(NP) grows Capture NP as an entry in the ta-

ble’s column 1
(NP) conducts (NP)

Capture both NPs as arg1, arg2
(?<myGroup> NP) grows

Name the capture group “my-
Group”

the {cat,dog} “the” followed by “cat” or “dog”
cats and {NN,NNS}

“cats and” followed by NN or
NNS

JJ* dog Zero or more JJ then “dog”
JJ+ dog One or more JJ then “dog”
JJ[2-4] dog 2 to 4 JJ then “dog”
dog 50 Matches “dog” and the 50 words

most distributionally similar to
“dog”

. dog Any word then “dog”
$colors Any entry in the single-column

“colors” table
$colors 100 same plus 100 most similar words
$flower.color Any in the “color” column of

“flower” table
Table 1: IKE’s Query Language

with a user in the loop. We now describe each of
these steps.

2.2.1 Define the types material and energy

To define a type, IKE lets a user build a single
column table. For example, for type material, the
user:

1. Creates a single column table called Material.
2. Manually adds several representative examples

in the table, e.g., “iron”, “wood”, “steel”.
3. Expands this set by searching for cosine-

vector-similar phrases in the corpus, and mark-
ing valid and invalid members (Figure 1). The
syntax $material ∼20 denotes the 20 phrases
most similar to any existing member in the
material table, where similar is defined as the
cosine vector between the phrase embeddings.
The parentheses “()” tells IKE that each result

is a candidate new member for this table.
4. Repeat step 3 until the table adequately charac-

terizes the intended notion of material

The process is repeated for the type Energy.

2.2.2 Create and Seed the conducts Table
The user next creates a two-column table con-

ducts, and then uses a seed pattern to find initial
pairs to populate it, e.g., the pattern

($Material) conducts ($Energy)

extracts pairs of materials and energies they con-
duct. The user selects valid pairs to initially populate
the table. Invalid pairs (negative examples) are also
recorded by IKE.

2.2.3 Bootstrapping to Expand the Table
The user can now bootstrap by invoking the Query

Suggestor to find additional patterns (queries) that
express the target relation. It does so by searching
for narrowings or broadenings of the current query
that cover a large number of positive pairs and a few
negative pairs in the table so far. The user then clicks
on one of these patterns to select and execute it (pos-
sibly with edits if desired) to find more instances of
the relation, marks good/bad pairs, and expands the
table. This process can then be repeated.

Narrowing involves searching the space of restric-
tions on the current query, e.g., replacing a POS tag
with a specific word, whereas the broaden feature
generalizes the given user query e.g. replacing a
word by its POS tag. In both cases the candidate
queries are ranked based on the number of positive,
negative, and unlabeled instances it produces. Al-
though the suggested queries can sometimes look
complicated with POS and chunk tags within them,
the user only has to understand them, not author
them from scratch. Hence the required skill set and
data analysis workload on the user is significantly
reduced. The system still gives control to the user
by letting him/her filter/edit the queries, and anno-
tate the extractions in each iteration.

By repeating this process, the user rapidly pop-
ulates the table with positive examples. Negative
examples are also recorded by IKE for use by the
Query Suggestor.

2.3 Execution Speed

IKE uses BlackLab [8] for indexing the corpus.
This, combined with the chunk-based representa-
tion, results in very fast query execution times (e.g.,
<1 second for a query over 10M sentences), an es-
sential requirement for an interactive system (Ta-
ble 2).

Corpus # sentences Avg. query-time (sec.)
Barrons 1.2K 0.2533
CK12 17K 0.2862
SimpleWikipedia 1M 0.5296
Web Subset (small) 1.5M 0.5953
Web Subset (large) 20M 2.809

Table 2: Avg. query-times with different sized corpora.

3 Experimental Evaluation

3.1 Experiments

Although IKE is still under development, we have
conducted a small, preliminary evaluation, compar-
ing it with two other methods for populating relation
tables. Our interest is in how these different meth-
ods compare in terms of precision, yield and time.
The methods compared were:
• Manual: The user manually authors and refines

patterns (without any automatic assistance) to
populate a table.
• Automatic: The user provides an initial table

with a few entries, and then lets the system boot-
strap on its own, without any further interaction.
• Interactive (IKE): Interactive bootstrapping, as

described earlier.
The manual system was implemented in IKE by dis-
abling the embedding-based set expansion and query
suggestion features. The automatic approach was
simulated in IKE by removing both user annotation
steps in Figure 2.2, and instead adding all patterns
and instances that occur at least k times in the cor-
pus (using k = 2).

3.2 Tasks and Datasets

We compared these methods to define and populate
two target relations: has-part(animal,bodypart),
and conducts(material,energy). All methods ex-
tract knowledge from the same corpora of science
text, consisting of ∼1.5M sentences (largely) about
elementary science drawn from science textbooks,

Simple Wikipedia, and the Web. For each relation,
two (different) users familiar with IKE were asked to
construct these tables. Although this study is small
and preliminary, it provides some helpful indicators
about the IKE’s usefulness.

3.3 Results

Method Acquired Patterns Extractions Time
No. of Average Number Yield in min.

patterns Precision (total) (+ves)
Manual 5 66.7 24 16 30
Automatic 108 34.4 183 63 -
IKE 41 59.2 142 84 20

Table 3: conducts(material,energy) table: IKE helps the user

discover substantially more patterns than the manual method

(41 vs. 5), with similar precision and in less time, resulting in

the overall highest yield. Fully automatic bootstrapping pro-

duced a large number of low precision patterns and overall

lower yield than IKE.

Method Acquired Patterns Extractions Time
No. of Average Number Yield in min.

patterns Precision (total) (+ves)
Manual 11 21.0 291 61 40
Automatic 228 3.4 1386 48 -
IKE 21 57.4 249 143 30

Table 4: has-part(organism,bodypart) table: Again, IKE pro-

duces the highest yield by helping the user discover substan-

tially more (21) high-precision (57.4%) patterns.

Table 3 shows the results for building the con-
ducts(material,energy)table. Most importantly,
with IKE the user was able to discover substan-
tially more patterns (41 vs. 5) with similar accu-
racy (59.2% vs. 66.7%) than the manual approach,
resulting in a larger table (84 vs. 16 rows) in less
time (20 vs. 30 mins). It also shows that fully au-
tomatic bootstrapping produced a large number of
low quality (34.4% precision) rules, with an overall
lower yield (63 rows). Table 4 shows similar results
for constructing the has-part(organism,bodypart)
table, again IKE having the highest overall yield.
Although this is a small study, it suggests that IKE
has value for rapid knowledge base construction.

3.4 Future Development

IKE is still under development, with several areas
needing further investigation. ... elaborate

4 Conclusion

We have presented IKE, a tool that performs fast,
interactive bootstrapping to develop high quality ex-
traction patterns for targeted relations. It is an exam-
ple of a Machine Teaching approach to knowledge
base construction, where the focus is on leveraging
the user to rapidly guide the system to good results.
The preliminary evaluation comparing with manual
and automated approaches, although small, is en-
couraging as it suggests that IKE makes the best of
worlds by improving recall compared with a manual
process while retaining precision within acceptable
bounds. We are currently using IKE to expand the
collection of tables used by the Aristo system [5].

Acknowledgments:
We thank Tony Fader, Dirk Groeneveld, Oren Et-

zioni, and Chris Clark for their critical contributions
to IKE.

References

[1] S. Amershi, M. Cakmak, W. B. Knox, and
T. Kulesza. Power to the people: The role of hu-
mans in interactive machine learning. AI Maga-
zine, 35:105–120, 2014.

[2] S. Amershi, M. Chickering, S. M. Drucker,
B. Lee, P. Y. Simard, and J. Suh. Modeltracker:
Redesigning performance analysis tools for ma-
chine learning. In CHI, 2015.

[3] G. Angeli, M. J. J. Premkumar, and C. D. Man-
ning. Leveraging linguistic structure for open
domain information extraction. In ACL, 2015.

[4] A. Carlson, J. Betteridge, R. C. Wang, E. R. Hr-
uschka Jr, and T. M. Mitchell. Coupled semi-
supervised learning for information extraction.
In Proceedings of the third ACM international
conference on Web search and data mining,
pages 101–110. ACM, 2010.

[5] P. Clark, O. Etzioni, T. Khot, A. Sabharwal,
O. Tafjord, P. Turney, and D. Khashabi. Com-
bining retrieval, statistics, and inference to an-
swer elementary science questions. In Proc. IJ-
CAI’16, 2016.

[6] M. Freedman, L. A. Ramshaw, E. Boschee,
R. Gabbard, G. Kratkiewicz, N. Ward, and R. M.

Weischedel. Extreme extraction - machine read-
ing in a week. In EMNLP, 2011.

[7] S. Gupta and C. D. Manning. Improved pattern
learning for bootstrapped entity extraction. In
CONLL, 2014.

[8] I. of Dutch Lexicology (INL). Blacklab; a cor-
pus search engine. https://github.com/
INL/BlackLab.

[9] S. Soderland, J. Gilmer, R. Bart, O. Etzioni, and
D. S. Weld. Open information extraction to kbp
relations in 3 hours. In TAC, 2013.

https://github.com/INL/BlackLab
https://github.com/INL/BlackLab

	Introduction
	Interactive Knowledge Extraction (IKE)
	IKE Query Language
	Example Workflow
	Define the types material and energy
	Create and Seed the conducts Table
	Bootstrapping to Expand the Table

	Execution Speed

	Experimental Evaluation
	Experiments
	Tasks and Datasets
	Results
	Future Development

	Conclusion

