Consider the matrix given below.

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 4 & 0 \\
-3 & 1 & 5 & 2 \\
-2 & 3 & 9 & 2
\end{array}\right]
$$

1. The transformation associated with A maps $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$.
2. Describe the row space of A.

Solution: The row space of A is the subspace of \mathbb{R}^{n} spanned by its rows, or the collection of all the linear combinations of the rows of A. When we reduce A, we find that

$$
R=\left[\begin{array}{cccc}
1 & 0 & \frac{-6}{7} & \frac{-4}{7} \\
0 & 1 & \frac{17}{7} & \frac{2}{7} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Here, we can see that the last row of R is all zeros, meaning the last row of A is a linear combination of the first two rows of A. The linear combination of the first two rows of A is therefore our row space, and can be expressed as

$$
\text { rowspace }(\mathrm{A})=\left\{\begin{array}{llll}
\left.\left.a\left[\begin{array}{llll}
1 & 2 & 4 & 0
\end{array}\right]+b\left[\begin{array}{llll}
-3 & 1 & 5 & 2
\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
\end{array}\right.
$$

3. Describe the column space of A.

Solution: The column space of A is the subspace of the columns of A, or the collection of all linear combinations of the columns of A. We can see from R that the first and second comlumns are linearly independent, therefore the first two columns of A are independent and constitute the column space of A, or

$$
\operatorname{col}(\mathrm{A})=\left\{a\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right]+b\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right] \quad a, b \in \mathbb{R}\right\}
$$

4. What is the Rank of A ?

Solution: The rank of A is the dimension of the row space and column space; that is, the maximum number of independent rows or columns. As we can see from both the row and column spaces, that number is 2 . Therefore, $\operatorname{Rank}(\mathrm{A})=2$
5. What is the Nullity of A ?

Solution:The nullity of A is the dimension of the null space of A. The number of columns n equals the rank r plus the nullity. Thus nullity $=\mathrm{n}-\mathrm{r}=4-2=2$
6. Describe the null space of A

Solution: The null space space of A is the collection of vectors x for which $A x=0$. We can use the reduced row echelon form R of the matrix A to find the basis vectors for the nullspace of A. Call these basis vectors n_{1} and n_{2} and let the matrix N have n_{1} and n_{2} as columns. The identity matrix fills in the remaining rows associated with the pivot variables.

$$
R=\left[\begin{array}{cccc}
1 & 0 & \frac{-6}{7} & \frac{-4}{7} \\
0 & 1 & \frac{17}{7} & \frac{2}{7} \\
0 & 0 & 0 & 0
\end{array}\right] \Longrightarrow N=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\frac{6}{7} & \frac{4}{7} \\
\frac{-17}{7} & \frac{-2}{7}
\end{array}\right]
$$

