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Introduction
Differential Topology is the study of smooth manifolds and their differentiable structures. In this project I will present some of the most oustanding and surprising results obtained in the field over the last fifty
years mostly on the problem of embedding and immersions of manifolds. In order to do so I will introduce some technical device including vector bundles and Stiffel-Whitney (Chern-Pontryagin) classes that
serve as key ingredients in formulating necessary and sufficient conditions for such immersions to exist. As a remarakble consequence I will present the extraordinarily surprising theorem of Steven Smale (1954)
on eversion of spheres in three space which astounded the mathematical community for decades!

Classification of Surfaces, Genus & Euler
Characteristic
Let us start by looking at surfaces, that is, 2-dimensional smooth
closed manifolds. Then by a classical result in topology each such
surface is diffeomorphic to a sphere with g handles attached to it.
The number g here is a topological invariant and is called the genus
of the surface. A related and equally useful notion is that of Euler
characteristic χ defined as χ = 2 − 2g. So the sphere (g = 0) has
χ = 2 and the torus (g = 1) has χ = 0 and all other surfaces have
negative χ.

g=0 g=1 g=2 g=3 g=4

Embeddings and Immersions of Manifolds
An immersion is a mapping of one smooth manifold into another
whose differential satisfies a certain non-degeneracy condition. An
embedding is an immersion which is additionally injective. This
can be easily seen in the case of the circle in the plane. Any smooth
closed curve in the plane is an immersion of the circle where as the
only embeddings of the circle are smooth Jordan curves! One of the
fundamental problems in differential topology is to characterise, for
a given pair of manifolds, all possible classes of immersion of one
manifold into the other. An indespensible tool for doing this are the
so-called ”Characteristic classes” described below.

Some Classes of n-Manifolds
For the sake of clarity here we list some important classes of mani-
folds that frequently occur in the theory:

1. Sphere Sn.

2. Projective spaces:
(a) Real Pn(R), (b) Complex Pn(C), (c) Quaternionic Pn(H).

3. Grassmann and Stiefel manifolds Gn,k, Vn,k.

4. Orthogonal and Special Orthogonal Groups O(n),SO(n).

5. Unitary and Special Unitary Groups U(n),SU(n).

Vector Bundles
A vector bundle over a manifold is an assignment of a vector spaces
(real or complex) to each point of the manifold. Whilst locally the
structure of a vector bundle is dictated by the structure of the vec-
tor space the picture is completely different globally. The study of
vector bundles over a manifolds says a lot about the topology and
immersions of the manifold. We proceed by first presenting the pre-
cise definition leaving the discussion and some prominent exmaples
of vector bundles to the next section. A real vector bundle ξ over a
base space B consists of the following:

1. A topological space E=E(ξ) reffered to as the total space.

2. A projection map π:E→B .

3. the structure of a vector space ∀ b∈B over the real numbers in
the set π−1(b).

Note that it is the last condition above that describes the local
structure of a bundle as that of its corresponding vector space.

The Tangent Bundle
The Tangent bundle τM of a manifoldM is a vector bundle in which
the total space DM is formed of the pairs (x, v) with x ∈ M and v
in the tangent space to M at x. The projection map π : DM → M
such that π(x, v) = x and the vector space structure π−1(x) defined
by t1(x, v1) + t2(x, v2) = (x, t1v1 + t2v2)

The Normal Bundle
The Normal bundle ν of a manifold M ⊂ Rn is the vector bun-
dle where the total space E ⊂ MxRn is formed of the pairs (x, v)
where v is orthogonal to the tangent space of M at x. The projec-
tion map π : E →M . The vector space structore in π−1(x) defined
by t1(x, v1) + t2(x, v2) = (x, t1v1 + t2v2)

Whitney-Stiefel Characteristic Classes
In general a Characteristic class is a cohomology class associated
to a vector bundle attached to a topological space. What concerns
us most in this research, and the problem of immerssions of man-
ifolds, are primarily the Stiefel-Whitney and the Chern-Pontryagin
classes. To put this into context we present the following funda-
mental existence result on the Stiefel-Whitney class: There is a co-
homology class wi(ξ) on each vector bundle ξ of a manifold where
wi(ξ) ∈ Hi(B(ξ);Z/2), i = 0, 1, 2, ..., Hi(Bξ);Z/2) is the ith sin-
gular cohomology groups of B with coefficients in z/2 wi(ξ) is the
Stiefel-Whitney class of ξ wi(ξ) satisfies the following

1. If a bundle map covers f:B(ξ)→ B(η) then : wi(ξ) = f∗(wi(η)).

2. If ξ and η are vector bundles over the same base space, then

wk(ξ + η) =
k∑
i=0

wi(ξ) ∪ wk−i(η).

One can think of these Characteristic classes as obstruction cocyles
asscociated with the extendibility of maps from the manifolds and
its corresponding vector bundle to the Stiefel manifold Vn,k.In what
follows we show how this device can be used to solve the eversion
problem for the 2-sphere S2 ⊂ R3.

The n-Sphere Inversion Problem
Take a circle, try to invert it inside out without leaving the plane.
This challenging task turns out to be impossible! For many years it
was believed that the same is true for the 2-sphere. However much
to the surprise of the mathematical world, Steven Smale, using tools
from differential topology proved that it is possible to invert a 2-
Sphere inside out in the 3-space. Technically speaking this means
that there exists a homotopy within the class of immersions of the
2-Sphere in R3, starting from the identity and terminating at the an-
tipodal map.
Using similar techniques Smale managed to give a complete proof
of the Poincaré conjecture in dimensions n ≥ 5. More precisely:
If Mn is a differentiable homotopy sphere of dimension n ≥ 5,
then Mn is homeomorphic to Sn. In fact, Mn is diffeomorphic to a
manifold obtained by gluing together the boundaries of two closed
n-balls under a suitable diffeomorphism.

Method

Consider a Sphere which can be bent,
and stretched, and pass through itself.
But we can not make tight creases.

We can not simply pass the sphere
through itself since this creates a tight
crease.
Now imagine the Sphere is made up
of a series of circles which we give a
wavy boundary.
We can then stretch this circle to
create most of our sphere then use a
dome at the top and bottom to show
the poles.

We represent one of these waves with
a guide, with the poles at the top and
bottom, we now want to turn this
guide inside out.

To start we pass the poles through
each other, but not far enough to form
a crease from the loop.

Then rotate the poles once in op-
posite directions.

This untwists the loop and our
guide has been turned inside out.

Now consider the same
process with multiple
guides.

Since the surface
can pass through itself,
each guide can be turned
inside out at the same
time.

We then have that
the entire Sphere has
been turned inside out
without making any
holes or tight creases.

Poincaré-Hopf Theorem
Let X be a smooth vector field on a compact manifold Mn. If X
has only isolated zeros then, Index(X)=χ(Mn). Here

χ(Mn) =

n∑
i=0

(−1)iβi(M), (1)

where βi is the i-th Betti number on Mn: βi = dimRH
i(Mn). As

χ(Mn) is a topological invariant of Mn then so is the index of X!

Existence of an immersion
According to Whitneys embedding theorem every smooth mani-
fold Mn embedds smoothly in R2n and immerses smoothly into
R2n−1. The device of characterstic classes and the vanishing of the
corresponding cohomology co-cyles dictates whether one can re-
duce the dimensions further in the target Euclidean space (e.g., if
wi(M

m) 6= 0, i < k Then M can not be immersed in Rm+k).

Examples and results

1. If Mn is parallelisable then it can be immersed in Rn+1.

2. Every closed 3-manifold can be immersed in R4.

3. If n ≡ 1(4) then Mn can be immersed in R2n−2.

4. Pn(R) can not be immersed in R2n−2 with n = 2s.

5. P2(R) can not be embedded in R3 but can in R4.

(Note that a manifold is said to be parallelisable iff its tangent bun-
dle is trivial. As an example the only parallelisable spheres are S1,
S3 and S7 and no more!)
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