For every connected undirected graph G, there exists a function s_{G} with two parameters n and m defined like so:
$s_{G}(n, m)=$ Maximum number of distinct, connected subgraphs of G of order n, in which each vertex of G is used in at most m of these subgraphs.
For example, in this graph:

$s(1,1)=|V|=5$
$s(2, \infty)=|E|=4$
$s(2,1)=1$ (in fact for all diameter-2 graphs, $s(2, m)=m$ up to $|E|$)
Another useful property:
$s(|V|-1, \infty)=$ number of non-articulation points in the graph.
My question is, does this s_{G} function unique determine graph G ?
In other words, are two graphs G and G^{\prime} isomorphic if and only if they have the same function?
And if so, if you restrict the second parameter m to the two values of $\{1, \infty\}$ does this new function also do the same?

