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Abstract

This report provides insight into the magnetic phenomenon of Hystere-
sis. Hysteresis is defined as a retardation effect where the magnetisation
of a magnetic material lags behind the magnetizing force. Here we will
explore the hysteresis loop for a silver steel ferromagnet and use this to
discover it’s magnetic properties. The method used will be to place a ferro-
magnet inside a solenoid with an alternating voltage which will continually
reverse the magnetic field and magnetism direction. The relation between
these two quantities will be used to produce a hysteresis loop from which
magnetic properties can be deduced. The results obtained were: sat-
uration magnetisation = (8.4 ± 0.5)(105)Am−1; remnant magnetisation
= (5.9± 0.5)(105)Am−1; coercive field: (4.3± 0.5)(104)Am−1; energy ex-
pended per cycle per unit volume of material: (1.55±0.05)(103)Jm−3s−1;
energy product: (8.7 ± 3.0)(104)Jm−3.

1 Introduction

Included in this report are details of the method, graphs, results, error analy-
sis, discussions and conclusions of results. Other researchers have found a lot
in this area. As will be later referenced in the report, the values of the mag-
netic properties explored in this report have already been found to much more
accuracy by other researchers. The work here is related to the wider body of
research however it does not provide any advancement in the field of ferromag-
netism. A practical application of ferromagnets is that they are used to make
hard disks and credit cards. This is due to the ferromagnetic property of Hys-
teresis which provides magnetic memory in the material. Therefore memory is
not erased which is very important in the items stated above. A scientist named
Alexander Stoletov was one of the first pioneer’s for electromagnetism. In 1871
he made the Stoletov curve showing magnetic permeability’s of ferromagnets.
Since then, the area of science has gradually advanced and is now used widely.

2 Theory

The theory for this experiment is based around magnetic dipoles and solenoids.
If we have a solenoid of ‘n’ turns and a current ‘I’ is passed through it, a
magnetic field will be induced with a magnitude given in equation (1). Here
µ0 = (4π)(10−7)Hm−1 is the vacuum permeability and ‘l’ is the length of the
solenoid.
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B =
µ0nI

l
(1)

The direction of this magnetic field is through the solenoid from end to
end. This is in accordance with the right hand rule. If one was to curl the
fingers of their right hand around the solenoid so that their fingertips pointed
in the direction of current. Their thumb would point in the direction of induced
magnetic field. Therefore, if we send a sinusoidally alternating current through
a solenoid, the magnetic field will continually change direction by 180 degrees.
A silver steel ferromagnet contains dipoles pointing in random directions in the
absence of a magnetic field. These dipoles are formed by the orbital directions of
electrons. Figure [1] shows the magnetic field lines induced when and electron
orbits. As can be seen, the magnetic field through the centre of the ring is
vertically upwards.

Figure 1: Induced magnetic field ’B’ lines caused by an electon’s orbit.

Adjacent electrons that have the same orbital direction have a net magnetic
field pointing through the centre of each orbit according to the right hand rule.
This net magnetic field is called a dipole. When an external field is applied
from a solenoid, the electron orbits gradually align meaning the dipoles point
in the same direction, thus forming a magnet. The act of the external field is
to provide a torque (or moment) force on the electrons. Hence giving rise to
the term ‘magnetic dipole moment’. Magnetisation is defined as the vector field
that represents the density of permanent or induced magnetic dipole moments
in a magnetic material. Therefore, when an external magnetic field is applied,
the magnetisation increases. Ferromagnets have an interesting property called
Hysteresis. When a ferromagnet is magnetised, it will not return back to zero
magnetisation when the external field is removed. The field has to be reversed in
order to decrease magnetisation back to zero. Therefore for ferromagnets, some
energy must be expended in order to totally randomise the dipole’s directions
once again after alignment. This is due to the fact that energy is required in
order to generate an applied magnetic field. In the case of this experiment, the
applied field was generated via a solenoid powered by the mains. A vector which
takes into account the alignment of the applied field ‘H’ and magnetisation ‘M’
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is given the name: ‘magnetic flux density, ‘B”. The equation relating these terms
is given in equation (2):

B = µ0(H +M) (2)

If an alternating magnetic field is applied, a hysteresis loop is traced out with a
graph of ’M’ against ‘H’. Figure (2) was sourced from reference (2). From this
graph, and a graph of ‘B’ against ‘H’ (which is shown below in fig (3)), some
magnetic properties of the ferromagnetic material used can be determined.

Figure 2: Graph of magnetisation ‘M’ vs magnetic field inside sample ‘H’. The
boxes on the RHS show the alignments of the dipoles at stages of the loop
corresponding to the numbers on the graph. The dipoles are aligned the same
way at maximum and minimum ‘M’, and are randomly arranged on the ‘H’ axis.

The values of ‘M’ at points 3 and 6 are equivalent to the positive and nega-
tive saturation magnetisation values. At these points, all of the dipole vectors
are aligned in either the positive or negative direction, therefore these are the
maximum and minimum possible magnetisation values. The remnant magneti-
sation is the value of ‘M’ at point 4. This is the magnetisation that remains
after the sample has had maximum positive applied field and now is under no
applied field. Point 5 is equivalent to the coercive field. This is the modulus of
the value of the magnetic field strength ‘H’ required to return the sample back
to zero magnetisation. From figure (3) some magnetic properties relating to the
energy expended in the sample can be obtained.
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Figure 3: Magnetic field inside sample ‘H’ vs magnetic flux density ‘B’ hysteresis
loop. The dotted line indicates the initial path (at the start of the first sinusoidal
cycle of applied magnetic field), the path then circulates anticlockwise around
the bold line.

As can be seen, the relation between ‘B’ and ‘H’ is not linear, instead a loop
is made. The total area enclosed within the loop is equivalent to the energy
expended during one cycle. Therefore, the greater the values of saturation
magnetisation and coercive field, the greater the area of the loop, hence the more
energy expended. Another measure of energy stored in the sample is the ‘energy
product.’ As outlined in reference (4), the energy product is equivalent to the
largest area of a rectangle drawn between the ‘B’ and ‘H’ axes with one of it’s
corners on the loop. Energy product is commonly used for comparisons between
different magnetic materials. Harder ferromagnets have larger hysteresis loops,
this is due to the fact that compared with soft ferromagnets, it takes more energy
to change the dipole alignment. Therefore harder ferromagnets are used for
permanent magnets whereas soft ferromagnets are used for temporary magnets.
A diagram for the experiment is shown below in figure (4):
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Figure 4: Diagram of the components of the experiment.

A sinusoidal voltage can be supplied from the power amplifier via Matlab
programming through the AI0 port. This alternating voltage can then be mea-
sured via the AI1 port and then dropped over the solenoid. An alternating
current through a solenoid produces a magnetic field from Faraday’s law shown
algebraically below (where ‘V’ is the voltage across the solenoid, n is the number
of turns around the solenoid, ‘φ’ is the magnetic flux and ‘t’ is the time from
when the voltage was applied):

V (t) = n
dφ

dt
(3)

The magnetic flux ‘φ’ here is equal to the magnetic flux density ‘B’ multiplied
by the cross sectional area of the coil ‘A’. Substituting equation (2) for ‘B’
from above, we obtain the expression relating voltage to applied field ‘H’ and
magnetisation ‘M’:

V (t) = nAµ0
d(H +M)

dt
(4)

In this experiment we want to measure the ‘M’ and ‘H’ fields separately of
our ferromagnet inside our large solenoid. The ferromagnetic sample will have
both ‘H’ and ‘M’ magnitudes due to the fact that it is a magnetic material. The
alternating voltage causes the dipoles to change direction therefore changing the
magnetisation. Whereas, if we were to use a dummy sample of non-magnetic
metal with a solenoid around it carrying alternating voltage, it would experience
the ‘H’ field and not an ‘M’ field. This is due to the fact that the alternating
magnetic field does not alter the directions of dipoles in a non-magnetic material.
The two samples are shown below:
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Figure 5: This shows the ferromagnet and dummy samples on the rod which is
placed in the large solenoid. The ‘+’ and ‘-‘ signs denote positive and negative
voltage.

The voltage across the ferromagnet sample is as in equation (4). Whereas,
as there is no magnetisation in the dummy sample the voltage across it is shown
below in equation (5):

V (t) = nAµ0
dH

dt
(5)

If we were to find the net voltage across both the ferromagnet and dummy
sample we would be left with the following equation (6):

V (t) = nAµ0
dM

dt
(6)

Therefore, the magnetisation of the ferromagnetic sample can be obtained
via manipulation of equation (6) to give equation (7):

M =

∫ t

0

V

nAµ0
dt (7)

In Matlab, the function ‘cumtrapz(x,y)’ computes an approximation of the
cumulative integral of ‘y’ with spacing ‘x’. The function ‘trapz(x,y)’ computes
the integral of ‘y’ over ‘x’ increments. These functions can be used to inte-
grate sample voltage over specific time spacing’s in order to produce an array
of magnetisation. We are now concerned with finding the magnetic field ‘H’
of the ferromagnetic sample. One might think this would be equivalent to the
magnetic field of the large solenoid ‘Ha’, however we must take into account the
demagnetising field. According to Maxwell’s equations, a condition of the mag-
netic flux density is that it must be continuous at boundaries between surfaces.
A boundary condition for the demagnetising field ‘Hd’ is that it is discontin-
uous at surfaces with normal components of magnetism (at the ends of the
ferromagnet). Therefore we can show the field lines of magnetic flux density,
demagnetising field and magnetism below:
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Figure 6: This shows the magnetic flux density (external field), the demagnetis-
ing field and the magnetisation of a ferromagnet.
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The direction of the demagnetising field inside the sample is such that it
opposes the magnetic field which created it. Therefore the total magnetic field
of the ferromagnetic sample is the sum of the applied and demagnetising fields.
The demagnetising field is proportional to the magnetisation, therefore we can
write this as a demagnetising factor ‘N’ multiplied by the magnetisation. This
is expressed in equation (8) (where ‘Ha’ is the applied field and ‘H’ is the total
field through the sample):

H = Ha −NM (8)

The demagnetising factor is given as a function of the aspect ratio which is
shown in equation (9). Where ‘AR’ is the aspect ratio, ‘l’ is the length of the
ferromagnet and ‘d’ is the diameter of the ferromagnet. Reference (5) explains
this in more detail.

AR =
d

l
(9)

3 Method

First, the apparatus was set up as shown in figure (4) with the sample placed
half way down the large solenoid. The reason why the position of half way down
was chosen was because this was the part of the solenoid where the magnetic
field was most uniform. As shown in step (1) of the flow diagram in figure (7),
a Matlab session was created and a sampling rate was chosen. I opted for a
sampling rate of 1000 as this would produce many points on my graphs without
the programme taking too long to run. An array of time was then created
and used to output a sinusoidal wave in series from the power amplifier to the
resistor and to the large solenoid. The output wave had a frequency of 4Hz, a
duration of one second and an amplitude of 5V. The 4Hz frequency was selected
as this was low enough to allow the sample to saturate (to get to maximum or
minimum magnetisation), yet high enough so that the sample was only just
saturated before the magnetic field and dipoles began to change direction. The
5V voltage was chosen as this was the voltage where the hysteresis loops were
shaped most similarly to that in figure (2). Next, graph (1) from figure (8) (the
caption explains how the graphs are numbered) was plotted of sample voltage
against time. This produced a sinusoidal wave in the figure window of Matlab.
After this, I removed the sample from the solenoid and ran the program to
obtain another graph. What appeared was a noisy signal which wasn’t centred
on zero volts. Therefore, in order to correct this systematic error, the mean
of the noise was calculated using the ‘mean’ Matlab function. This mean was
then taken away from the sample voltage array and replotted in order to obtain
noise centred on zero volts. The sample was then placed back into the solenoid
half way down. After this, the values of ‘n’ and ‘A’ were needed for use with
equation (7). The number of turns of the ferromagnet was 400. The diameter of
the cylindrical ferromagnetic sample was found using a micrometer. Therefore
the cross-sectional area was then found. Next, the function ‘cumtrapz(t,V)’ was
used to find the area between graph (1) and the ‘t’ axis. This was then used
in equation (7) with the know values of ‘n’, ‘A’ and ‘µ0’ to find the magnetism
array for the ferromagnet. This was plotted (in graph (2)) against time. As was
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expected, the ‘M’ against ‘t’ graph produced a minus-sine wave which was the
integral of the minus-cosine graph from graph (1). Next, resistor voltage against
time and power amplifier voltage against time were plotted in graphs (3) and (4)
to give a greater understanding of how the experiment was working. After this,
an array of current though the large solenoid was found. This was simply found
considering Ohm’s law for a current in series through a resistor. The value of the
resistor was noted on the resistor itself. This meant the graph of current against
time (graph 5) was the factor of the resistor times less in vertical magnitude at
every point. Now the magnetic flux density inside the solenoid was plotted in
graph (6). This was done using equation (1). A value of ‘n’ was written on the
solenoid itself. The array of current was used as ‘I’. A larger micrometer was used
to find the length of the ferromagnet ‘l’ than that used to find ‘d’. After this,
the magnetic field inside the sample was considered. We know from equation (8)
that the demagnetising field has to be taken into account in order to find this.
The aspect ratio was found and this allowed the demagnetising factor to be found
using the graph in the lab manual. Therefore the magnetic field array could be
computed from equation (8). This was then plotted against time in graph (7).
Next the magnetic flux density of the sample was found using equation (2).
Graphs (8) and (9) are hysteresis loops of magnetism against magnetic field
and magnetic flux density against magnetic field. Now we are faced with the
issue where we have four hysteresis loops and we only need one. To overcome
this problem, the 80th to 305th elements of the magnetic field, magnetic flux
density and magnetism arrays were reassigned to new variables in Matlab as
these form one hysteresis loop instead of four. As can be seen from graphs (8)
and (9) the hysteresis loops are not centred on the origin. This is an issue as it
will produce systematic errors in results. Therefore, offsetting is required to re-
centre these onto zero. This was done by taking the average of each of the three
‘B’, ‘H’ and ‘M’ arrays and taking this away from the arrays themselves. The
new arrays were then used to make the ‘M’ against ‘H’ and ‘B’ against ‘H’ loops
of graphs (10) and (11). Now we have our desired hysteresis loops. We know
from theory that the maximum ‘M’ value is the saturation magnetisation. The
value of ‘M’ when H=0 is the remnant magnetisation, and the modulus of the
value of ‘H’ when M=0 is the coercive field. We can look at our arrays and find
the points of these arrays corresponding to the places mentioned and let these
equal the saturation magnetisation, remnant magnetisation and coercive field
values. Next, the magnetic flux density array was broken down into four parts
corresponding to the four quadrants of the B vs H loop. The ‘trapz’ function was
then used to find the areas of the four quadrants of graph (11). We were careful
to use the transpose of the matrix if the matrix dimensions were not agreed
in Matlab. These four area values were then added and the modulus taken.
This value corresponded to the energy expended by the ferromagnet per cycle.
However, we need to divide this value by the volume of the ferromagnet. This
volume could be calculated (as the cross-sectional area and length were already
known). Thus, we now have the energy expended per cycle per unit volume.
The energy product was found by visually looking at graph (11) and seeing
where the largest box could be drawn in the second quadrant. The distances
from this point to the origin along the horizontal and vertical axis were then
found and then multiplied. This gave the area of the box which was equivalent
to the energy product.
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START

(1) create a session

(2) Output a sinusoidal wave from power amplifier to resistor and solenoid

(3) Plot sample voltage vs time

(4) Calculate mean of noise and set zero offset

(5) Integrate sample voltage and use this to plot M vs time ‘t’

(6) Plot resistor voltage, power amplifier voltage, current and magnetic flux density
all against t

(7) Use demagnetising factor to plot magnetic field ‘H’ vs t for ferromagnet

(8) Calculate magnetic flux density in the ferromagnet, then plot M vs H and B
vs H hysteresis loops

(9) Assign array corresponding to 1 loop, find offsets and centre loops on (0,0)

(10) Plot M vs H and B vs H loops with the new arrays

(11) Use arrays to find saturation magnetisation, remnant magnetisation, coercive
field and energy product

(12) Use trapz to find energy expended per cycle per unit volume

STOP

Figure 7: Flow diagram showing the steps of my computer programming.
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4 Results

The diameter of the ferromagnet was found using a micrometer to be (6.32±0.01)mm
where the uncertainty was given as the precision of the micrometer. This corre-
sponded to a cross-sectional area of (3.14 ± 0.01)(10−5)m2. Here the error was
found considering error propagation. The equation used is shown in equation
(10). Here the factor of ‘n’ is 2 because the diameter must be squared in order
to obtain the area of a circle. ‘A’ is the cross-sectional area, ‘d’ is the circle
diameter and the ‘∂’ represents the error in the quantity.

δa

a
= 2

δd

d
(10)

To obtain graph (5) the value of the resistor was required. This was written
on the resistor itself to a precision of (0.1 Ω) therefore this was taken to be the
precision. Therefore resistance = (1.5±0.1)Ω. The number of turns of the large
solenoid was 2017 as this was written on the solenoid itself. The length of the
ferromagnet was found with a different micrometer which only had a precision
of ±0.1mm to be (152.5±0.1)mm. These values were used along with the array
of current to obtain magnetic flux density against time in graph (6). Equation
(9) was used in conjunction with the diameter and length of the ferromagnet
along with the following error propagation equation in order to obtain an aspect
ratio of (24.1±0.04). Here ‘AR’ is the aspect ratio, ‘l’ and ‘d’ are the length and
diameter of the ferromagnet.

δAR

AR
=

√
(
δl

l
)2 + (

δd

d
)2 (11)

This corresponded to a demagnetising factor of (0.0037±0.0001) according to
the precision of the graph supplied in the lab manual. This was used to define the
array for the magnetic field of the ferromagnet plotted in graph (7). The cross-
sectional area and length of the ferromagnet were multiplied together to find the
volume of the ferromagnet. The value obtained was (478 ± 1)(10−8)m3. Here
the error was obtained via the error propagation equation (11) as this equation
is valid for both multiplication and division. Except ‘AR’ was replaced with vol-
ume ‘v’, and ‘d’ replaced with cross-sectional area ‘A’. The volume was needed
in order to find the energy expended per cycle per unit volume. The saturation
magnetisation was found to be (8.4 ± 0.5)(105)Am−1, the remnant magnetisa-
tion: (5.9± 0.5)(105)Am−1 and the coercive force to be: (4.3± 0.5)(104)Am−1,
the energy expended per cycle per unit volume to be: (1.5± 0.2)(103)Jm−3s−1

and the energy product to be: (8.7±3.0)(104)Jm−3. Here the errors were found
considering error propagation and the standard deviation of repeats.
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Figure 8: This figure shows the graphs created from my computer program. For
referencing graphs in the text, the graph number will ascend across the page.
Therefore graph (1) is the top-left, graph (2) is the top-middle, graph (4) is the
2nd row, 1st column etc.
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5 Analysis

The position of the ferromagnet down the large solenoid provided error. There
was no way of knowing whether the ferromagnet was located at the centre of
the solenoid. This was important as the centre was where the magnetic field
was most uniform. Therefore random errors were made as a consequence of
this. However this error was negligible in comparison to other errors. There
was some noise in the data from the sample voltage. This was indicated by the
fact that the mean of the signal had to be computed with the ferromagnet not
present in the large solenoid in order to correctly offset the data. This would
therefore have provided a small source of random error throughout the exper-
iment. The method used to find the saturation magnetisation was erroneous.
As explained in the method, the peak magnetisation value for one run through
of the experiment was taken to be at a certain place in the magnetisation array
for all repeats of the experiment. However, the highest magnetisation value for
a repeat may have occurred elsewhere in the array. This would have resulted in
a magnetisation value being recorded which was not the highest. Therefore the
true saturation magnetisation would have been missed. Similar is the case for
the remnant magnetisation and coercive field measurements. Whereby, the cor-
rect value may have moved place in the array between repeats. Except in these
cases, the value closest to zero of the magnetisation and magnetic field arrays
was required, rather than the maximum value required for saturation magnetisa-
tion. Due to this source of error, a standard deviation value of (±5(104))Am−1

was found. This was far greater than the error from propagation of precisions
of instruments. This error was found on both the saturation magnetisation and
remnant magnetisation values. The standard deviation on the coercive field was
found to be (±5(103))Am−1. The calculation of energy product had error as-
sociated with it due to the method used. As explained in the method, the sizes
of the width and height of the box were chosen based on visually looking at the
graph itself. There was therefore a high probability that a larger box could have
been made corresponding to different sizes of width and height. Especially as
the lengths of the magnetic flux density and magnetic field strength arrays for
the single hysteresis loop were both 226. Due to the fact that this error had a far
greater impact on the energy product than the precision of instruments, an error
of (±3(104)) was found from standard deviation for the energy product. As can
be seen in graphs (8) and (9), the hysteresis loops gradually shift to the right
and slightly down with each new cycle. Theory suggests the loops should all lie
on top of one another because the sample should magnetise and demagnetise by
the same amount in each cycle. The fact that all of the loops are almost exactly
evenly spaced apart indicates systematic error. The reason behind the shift in
loop position can be traced back to the sample voltage versus time graph (1).
The voltage oscillates with the same positive amplitude and frequency. But the
trough of the wave gradually moves down to a lower and lower voltage. The
reason behind this is not known for sure but there are a few possibilities. One of
which is that the chemical properties of the ferromagnet mean that it is magne-
tised better in one direction than the other. Another possibility is that the coils
were not uniformly wrapped around the sample, meaning more magnetisation in
one direction than the other. A faulty voltage signal from the power amplifier
is not a possibility as graph (4) (the graph of power amplifier voltage versus
time) shows a negative sine wave with no anomalies. The micrometers used in
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this experiment seemed to function properly therefore the error on these can be
assumed to be equivalent to their precision.

6 Discussion

The saturation magnetisation value from reference (6) was (1.28±0.08)(106)Am−1.
The value from this experiment was (8.4±0.5)Am−1. The errors do not overlap
and the percentage difference of 34% indicates a fairly poor result. The ma-
jor limiting factor here was the programming method in which the hysteresis
loop was used to find the saturation magnetisation. A better method would have
been to use the ‘max’ Matlab function to find the maximum magnetisation value
in the array each time and use this as the saturation magnetisation. The rem-
nant magnetisation value from reference (6) was (1.04 ± 0.008)(106)Am−1.The
value from this experiment was (5.9 ± 0.5)(105)Am−1. The errors do not over-
lap with the values and the percentage difference of 43% indicates a reason-
ably poor experiment. As was the case with the saturation magnetisation,
the key limiting factor here was the method of using the programming to ob-
tain the value. Here, a better procedure would’ve been to find the modulus
of the magnetic field array (by squaring and square rooting). Then using the
‘min’ function to find the lowest value in the array and using the magnetic
field value corresponding to this value in the array. The coercive field value
from reference (6) was (5.3 ± 0.1)(104)Am−1. The value obtained from this
experiment was (4.3 ± 0.5)(104)Am−1. Therefore the errors do not overlap
with the values but they are relatively close with a percentage difference of
only 19%. As was the case with the remnant magnetisation, the limiting fac-
tor was the method of programming and the way to improve the experiment
would be to implement the same programming procedure as the one outlined
for the remnant magnetisation. Except the magnetisation array should be ma-
nipulated instead of the magnetic field array. The energy product value from
reference (6) was (4.3 ± 0.1)(104)Jm−3. The value obtained from experiment
was (8.7 ± 3.0)(104)Jm−3. These values are quite far apart with a percentage
difference of 102% which should indicate a bad experiment. However, the error
bars from the experiment nearly overlap the referenced value, therefore the ex-
periment is almost scientifically viable. The main source of error in this value
was in the method of finding the largest area of a box in the second quadrant of
the hysteresis loop. This proved even more erroneous than the error in finding
the saturation magnetisation, remnant magnetisation and coercive field. This
is due to the fact that it was difficult to visualise where the largest box could be
drawn (on graph (11)). A slight adjustment in the width or height of the box
resulted in in a much larger change in the area of the box. This was due to the
steep gradient of the hysteresis loop at the point where the box was placed in the
second quadrant. A better way to compute this value would have been to set up
a new Matlab array comprising of the product of the magnetic flux density and
magnetic field. Then to find the maximum value of this array and to use this
as the energy product. The energy expended per cycle per unit volume value
from reference (6) was (2 ± 0.1)(103)Jm−3s−1. The value obtained from this
experiment was (1.55±0.05)(103)Jm−3s−1. Therefore the errors do not overlap
but the values are fairly close. This is indicated by the percentage difference of
22%. The error obtained has come from propagation of values used to obtain the
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hysteresis loop (such as aspect ratio and sample diameter) and the values used
to obtain the volume of the ferromagnet (such as length and diameter). As can
be seen the error is very small compared to the value itself. This indicates that
systematic errors were more prevalent in this experiment than random ones.
The errors arising from precisions of instruments were very small. This was due
to micrometres having relatively good precision and the sampling rate of 1000
resulting in a very smooth hysteresis loop. The main source of systematic error
is likely to have arisen from the four hysteresis loops not overlapping. Although
this didn’t produce any measurable error (as the hysteresis loops remained the
same shape) the fact that the loops were not aligned indicates that there was
possibly something wrong with the ferromagnet sample or the way in which the
wire was wrapped around it. There are no other obvious sources of systematic
error. Therefore on the whole, the way in which this experiment could be im-
proved so that the answers gained are closer to those referenced (in reference
(6)) would be to closely examine the ferromagnet sample to see if there is fault
with it. Then to find a way to resolve this problem and carry out an experiment
which results in overlapping hysteresis loops and better results.

7 Conclusion

In conclusion, accurate results were very difficult to obtain from this experi-
ment. The reason for this was the fact that the error analysis brought back
the conclusion that the main source of error was systematic, and could logically
only come from the ferromagnet itself. However, the experiment could have been
vastly improved with more thorough programming procedures. This would have
greatly reduced the errors on all of the results except for the energy expended
per cycle per unit volume. One good point was the shape of the hysteresis loops
obtained. These were an almost exact replica of that shown in reference (2)
and show that the theory was being realised in the experiment. One bad point
was the misalignment of the hysteresis loops and the unclear nature of their
presence. The values obtained by other researchers on the quantities examined
are far more precise than those found in this experiment. Therefore the work
in this project has not impacted the wider physical world.
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9 Appendix

Below is the Matlab code used in the investigation:

clear, close all
daq.reset;

%Creating the session
s=daq.createSession('ni');
s.addAnalogOutputChannel('Dev1',0,'Voltage');
s.addAnalogInputChannel('Dev1',0:2,'Voltage');

%Setting sample rate
s.Rate=1000;

%setting frequency and duration of the signal.
freq=4;
duration=1;

%creating and plotting my sinusoidal input
time=(0:1/s.Rate:duration-1/s.Rate)';
voltage=5.*sin(2*pi*freq*time);
queueOutputData(s,voltage);

[data,timestamps]=startForeground(s);
figure(1)
subplot(4,3,1)

%Accounting for the offset of the data
offset=mean(data(:,1));
correctedv=(data(:,1))-offset;
plot(time,correctedv,'r-')
xlabel('time/s');
ylabel('ferromagnetic sample voltage/V')

%integrating voltage to find magnetisation
integral=cumtrapz(timestamps,correctedv');
m=(6.34e7).*integral;
subplot(4,3,2)
plot(timestamps,m,'r-')
xlabel('time/s');
ylabel('M/(A/m)')

%Plotting resistor voltage against time
subplot(4,3,3)
plot(time,data(:,2),'r-')
xlabel('time/s');
ylabel('Resistor Voltage/V')

%Plotting power amplifier voltage against time
subplot(4,3,4)
plot(time,data(:,3),'r-')
xlabel('time/s');
ylabel('Power amplifier voltage/V')

%Plotting current against time
current=(data(:,2))./1.5;
subplot(4,3,5)
plot(time,current)
xlabel('time/s');
ylabel('current/A')
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%Plotting magnetic flux density against time
mu0=4.*pi.*(10.ˆ-7);
n=2017;
l=0.553;
b=(mu0.*n.*current)./l;
subplot(4,3,6)
plot(time,b)
xlabel('time/s');
ylabel('magnetic flux density(B)/T')

%Plotting magnetic field strength against time
H=(b./mu0)-(0.0037*m');
subplot(4,3,7)
plot(time,H)
xlabel('time/s')
ylabel('H/(A/m)')

%Plotting M vs H hysteresis loops
subplot(4,3,8)
plot(H,m)
xlabel('H/(A/m)')
ylabel('M/(A/m)')

%Plotting B vs H hysteresis loops
subplot(4,3,9)
b in=mu0.*(H+m');
plot(H,b in)
xlabel('H/(A/m)')
ylabel('B/T')

%Getting arrays for one of the loops
loop4m=m(80:305);
loop4H=H(80:305);
loop4b in=b in(80:305);

%setting offsets for H,m and B
avloop4H=((max(loop4H))+min(loop4H))./2;
avloop4m=((max(loop4m))+min(loop4m))./2;
avloop4b in=((max(loop4b in))+min(loop4b in))./2;

%reassigning values to centre them on the origin
betloop4H=loop4H-avloop4H;
betloop4m=loop4m-avloop4m;
betloop4b in=loop4b in-avloop4b in;

%Plotting one hystersis loop of M vs H
subplot(4,3,10)
plot(betloop4H,betloop4m)
xlabel('H/(A/m)')
ylabel('M/(A/m)')

%Plotting one hystersis loop of B vs H
subplot(4,3,11)
plot(betloop4H,betloop4b in)
xlabel('H/(A/m)')
ylabel('B/T')

%calculating saturation magnetisation
satmagpos=max(betloop4m)
satmagneg=min(betloop4m);
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%calculating remanant magnetisation
remmag=betloop4m(153)

%calculating coercive field
coefie=betloop4H(181)

%calculating energy expended per cycle per unit volume
area1=(trapz(betloop4H(1:57)',betloop4b in(1:57)'));
area2=(trapz(betloop4H(58:116)',betloop4b in(58:116)'));
area3=(trapz(betloop4H(117:181)',betloop4b in(117:181)'));
area4=(trapz(betloop4H(182:226)',betloop4b in(182:226)'));
area=-(area1+area2+area3+area4)

%calculating energy product
bh=betloop4H(153:181).*betloop4b in(153:181);
enprod=sqrt((min(bh)).ˆ2)
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