
c©Monero Research Lab

RESEARCH BULLETIN MRL-0006

Difficulty Adjustment Algorithms in
Cryptocurrency Protocols
12 October 2014
Surae Noether* and Sarang Noether

*Correspondence: lab@monero.cc
Monero Research Lab Abstract

As of this writing, the algorithm employed for difficulty adjustment in the
CryptoNote reference code is known by the Monero Research Lab to be flawed.
We describe and illustrate the nature of the flaw and recommend a solution. By
dishonestly reporting timestamps, attackers can gain disproportionate control
over network difficulty. We verify this route of attack by auditing the CryptoNote
reference difficulty adjustment code, which, we reimplement in the Python
programming language. We use a stochastic model of blockchain growth to test
the CryptoNote reference difficulty formula against the more traditional Bitcoin
difficulty formula. This allows us to test our difficulty formula against various
hash rate scenarios.
This research bulletin has not undergone peer review, and reflects only the

results of internal investigation.

1 Introduction
For blockchain-based currencies such as Monero and Bitcoin, both transaction ver-
ifications and mining rewards occur upon block arrivals. The rate of block arrival is
tied to both network hash rate and the block difficulty score. A good block difficulty
adjustment method tracks network hash rate such that block arrival rate is kept on
target; this ensures that currency rewards for mining are paid on schedule and that
transaction verification does not stall.
The difficulty score of the next block to be added to the blockchain depends on

the sequence of timestamps of the blocks preceding it, together with those difficulty
scores. We have no way of validating a timestamp, and so timestamps are vulnerable
to manipulation; the sequence of timestamps need not even be ordered. Hence, min-
ing reward scheduling and transaction verification are vulnerable to manipulation
by way of difficulty manipulation.
To our knowledge, at the time of this publication, the study by Kraft in [4] is the

first and only analysis of blockchain difficulty adjustment. In part, [4] formally es-
tablishes the relationship between nonhomogeneous Poisson processes, block arrival
rate, and network hash rate; we recapitulate some of those arguments less formally
here in Section ??. Kraft also develops a model of block arrival as a function of
exponential hash rate and derives the desired constraint to place upon the model

mailto:lab@monero.cc

c©Monero Research Lab Page 2 of 26

to ensure block arrival times stably approach the target. Kraft refers to the desired
constraint as the time-ratio update, and develops a fixed point iteration based on
time-ratio updating as a new difficulty adjustment method. Under an exponential
network hash rate with a constant growth, Kraft showed that the proposed fixed
point iteration yields block arrival time that exponentially approach the prescribed
target. Although Kraft assumed that network hash rate is an exponential function of
time, this result and many of the other results from [4] may be naturally extended to
piecewise continuous exponential functions (with either positive or negative growth
rate).
In this research bulletin, we audit the difficulty assessment and adjustment compo-

nents of the CryptoNote reference code, and we compare this code with the Bitcoin
code; we conclude that the CryptoNote reference code is an inadequate solution
to difficulty assessment and adjustment. We informally derive a stochastic process
model of block arrival as a function of a piecewise constant network hash rate and
we verify that, under our model, Kraft’s time-ratio updating is a linear maximum-
likelihood estimate of network hash rate based on block arrival rate. We propose a
difficulty adjustment method for Monero similar to the one proposed by Kraft, but
with a few differences. In particular, we utilize fixed point iterations and nonlinear
dynamics; with nonlinear choices, we may ensure that difficulty adjustment is rela-
tively insensitive to relatively small changes in block arrival rate, which are likely
to correspond with stochastic noise.
We use stochastic simulations to compare our derived difficulty adjustment with

the CryptoNote reference code and with the Bitcoin code under various piecewise
constant hash rate scenarios. In particular, we investigate very large steps up and
down. We consider this to be a “worst-case scenario” analysis, i.e. Lex Luthor’s
mining pool controlling half the network hash rate switches away to another coin.
Rather than Kraft’s approach, we implement our model of block arrival rate un-
der a piecewise constant network hash rate for a few reasons. Piecewise constant
functions are dense in L2 on any compact interval, so these are mathematically
convenient functions to work with. Simulating nonhomogeneous Poisson processes
with piecewise constant rates of arrival is not difficult. Also, by assuming computers
are either mining full-bore or they are not mining at all, we are actually closer to
realistic dynamics under a piecewise constant scenario.
We also consider a sort of “timewarp” attack and demonstrate that the current

CryptoNote reference code is vulnerable to a certain mode of attack. By this attack,
a user manipulating their timestamps may choose to have no impact on difficulty
whatsoever, or may choose to disproportionately increase their impact on difficulty.
The model we present herein is simplified in at least two critical ways compared

to the true behavior of the network. First, we assume that there are no propagation
delays of block discoveries, and second, we assume the usual Nakamoto parent
coin selection rule. That is to say, although we will make some comments about
parent coin selection rule in Section 2, we will not investigate variants of parent
coin selection rules such as Sompolinsky’s GHOST rule in this document.
The modeler is stuck with a dilemma. On one hand, as we have done herein, way

may assume no propagation delays occur in the cryptocurrency network, which leads
to unrealistic behavior. With such an assumption, everyone has perfectly accurate

c©Monero Research Lab Page 3 of 26

data and thus every user will select the same parent coin, regardless of parent
coin selection rule. Furthermore, in Poisson processes, arrivals may not occur si-
multaneously, and so we never have more than one chain in the blocktree. On the
other hand, we may incorporate assumptions about propagation delays in a cryp-
tocurrency network, but these assumptions are equivalent to assumptions about
the cryptocurrency network structure (which is unobservable) and speed (which is
estimable). In the former case, we are sacrificing realistic competitive behavior so
that we are not forced to make unrealistic assumptions about network structure.
In the latter case, we are gaining some realistic competitive behaviors but we are
assuming much about network structure.
One could mitigate the problem of making assumptions about network structure

by making empirical measurements such as average and standard deviation of block
transmission times, inferring data about the network structure. However, if a re-
searcher were to go down the route of estimating network structure, she would also
need to study how rules regarding parent coin selection can impact blockchain dy-
namics in the presence of competing chains. Studying these things in the context of
forking blockchains and selfish mining would certainly be a project worthy of effort.
However, this is beyond the scope of this document, which is primarily concerned
with the behavior of difficulty scores in response to varying network hash rates.
Hence, we go with the former assumption, with no propagation delays and with the
Nakamoto parent coin selection rule.
Before beginning, we define for the reader some notation we shall use in the sequel.

When block arrival rate is viewed as a nonhomogeneous Poisson process, we denote
the instantaneous rate of block arrivals on the network as λ(t). We wish to keep
instantaneous block arrival rate close to our target block arrival rate, λ∗, which is
a known constant. We denote instantaneous network hash rate as H(t), which is
unknown and not directly observable (although we run simulations with piecewise
constant H(t)). We may occasionally refer to a cryptographic hash function H, and
a nonce, x. We consider the blockchain to be a sequence of blocks, B0, B1, Each
block, Bi, consists of a difficulty score and a (possibly false) timestamp:

B0 = (t0, d0),B1 = (t1, d1),B2 = (t2, d2), . . .

We begin counting the genesis block as height 0, so the block of height n − 1 is
the nth block to arrive; the number of inter-arrival times corresponds with block
height this way. The block of height n as Bn, the difficulty of the block of height n
as dn. We may occasionally refer to a nonce, which we denote x.
For some m > 2, we will generate a sequence of sample block arrival rates, λ̂i, for

i = m+1,m+2,m+3, . . ., each with sample sizem. Ifm = 2, we are only considering
the inter-arrival time between the latest two blocks, for example. From these, we
compute network hash rate estimates, Ĥi. For some ` 6 m, we also compute Hi, for
each i = `, ` + 1, ` + 2, . . ., the moving average of the network hash rate estimates
with sample size `, Hi = 1

`

∑`
j=1 Ĥn−j . If ` = 1, then the moving average is

simplified to our latest estimate of instantaneous hash rate. Notice that m/λ∗ is the
expected length of time to observe m arrivals from a homogeneous Poisson process

c©Monero Research Lab Page 4 of 26

with rate λ∗; so, for example, if our block arrival target is λ∗ = (60.0s)−1 and we
wish to use the last five minutes of data to compute our sample block arrival rate,
we set m = 5. On the other hand, if we wish to use the last two hours of data, we
set m = 120. Also note that the expected block arrival rate from a homogeneous
Poisson process with constant rate λ∗ is not the expected block arrival rate from the
nonhomogeneous Poisson process with non-constant rate λ(t), which is proportional
to the time-varying network hash rate.
TODO: Verify that, under our model, Kraft’s time-ratio updating is a linear

maximum-likelihood estimate of network hash rate based on block arrival rate.
TODO: Ensure that difficulty adjustment is relatively insensitive to relatively

small changes in block arrival rate
TODO: Use stochastic simulations to compare our derived difficulty adjustment

with the CryptoNote reference code and with the Bitcoin code under various piece-
wise constant hash rate scenarios. In particular, we investigate very large steps up
and down.
TODO: Consider a “timewarp” attack and demonstrate that the current CryptoNote

reference code is vulnerable to a certain mode of attack. By this attack, a user ma-
nipulating their timestamps may choose to have no impact on difficulty whatsoever,
or may choose to disproportionately increase their impact on difficulty.

2 Blockchain growth model
In this section, we define a stochastic process that models the growth of the
blockchain over time, and we justify why this model is a good representation of
blockchain growth. We also make a few comments about parent coin selection rules.
In Section 2.1, we make a general criticism of traditional blockchain methods and
describe a possibly novel route of attack based solely on blockchain dynamics.
First, we describe our model, which may be represented formally in the following

way; let us worry about justification in a moment. We use as input an unknown,
a priori, positive hash rate function H(t) > 0 with support containing the interval
[0, T) for some T > 0, where T is a constant denoting the time we stop modeling
the network. We could apply more assumptions about H(t) if we feel this is not
sufficient. For example, we could also presume that H(t) is bounded below away
from zero, say H(t) > 1, but this won’t change our model very much. We could
also presume H(t) is piecewise constant (modeling user hash rates as either on the
network at full speed or not), or we could assume H(t) is generated by some other
stochastic process, which may or may not be dependent upon the current state of
the blockchain. For a general derivation, we simply assume that H(t) is positive
with support containing [0, T).
We set initial difficulty d0 = 1. A nonhomogeneous Poisson process governing

block arrivals with counting process N(t) is observed. Recall that N(t) corresponds
to the total number of block arrivals on the time interval [0, t). Denote the instan-
taneous rate of block arrivals at time t < T as λ(t) = H(t)/dN(t). The nonhomo-
geneous Poisson process gives rise to block arrival times t0, t1, t2, . . ., which may
then be manipulated by a malicious user, giving rise to manipulated block arrival
times t̂0, t̂1, The value of the denominator in the block arrival rate, dN(t), is
block difficulty. This value is generated from a function that is determined by the

c©Monero Research Lab Page 5 of 26

manipulated block arrival times and the difficulties of the top blocks. That is to
say, we have some function φ and we set

dN(t) = φ((t̂i, di)
N(t)−1
i=0)

We define a blockchain in this context, then, as the stochastic process consisting
of the sequence of ordered pairs (t̂i, di)

N(t)
i=0 , where the difficulty dn = φ((t̂i, di)

n−1
i=0).

Observe two facts: first, the latest block (the block with ti = maxj(tj)) is not neces-
sarily the top block (which has height n− 1) because the manipulated timestamps
need not occur in the same order as their indices. Second, we have defined this
notion so generally that it encompasses a variety of difficulty adjustment methods.
For example, Bitcoin has a difficulty adjustment period of 2016 blocks. That is to
say, for Bitcoin, the function φ is dependent upon n, so that if n ∼= 0(modp) for
some integer p, then for k = 0, 1, 2, . . . , 2015, dn = dn+k.
To justify this model, recall how the proof-of-work competition for block validation

works. Users collect transactions into blocks for validation and try to hash nonces
together with block data in order to find a hash smaller than a certain target. That is
to say, if a user on the network finds some x such that dn ·H(B+x) < fixed_target,
they have earned the right to declare a block as valid and they usually receive a
block reward in the form of a coinbase transaction. Everyone who is working off of
the same copy of the blockchain as each other will compute difficulty, dn in the same
way. When a user finds such an x, they publish B, x, and a possibly untrustworthy
timestamp. They then recompute their difficulty. When a user hears about a new
block, they add it to their copy of the blockchain and recompute their difficulty
before trying more hashes.
Since the goal of the proof-of-work game is to find x such that dn · H(B + x) <

fixed_target and since the output of a good hash function is, in practice, indistin-
guishable from a uniform distribution, this implies the probability that any given
nonce is a success is preciselyfixed_target/dn. That is to say, each trial testing a
nonce is a Bernoulli trial (weighted coin flip) with probability of success inversely
proportional to the difficulty of the next block to be added. Without loss of general-
ity, we may choose fixed_target = 1; doing so calibrates the difficulty score such
that dn = 1 corresponds with a success on each and every nonce. Hence, each trial
testing a nonce is a Bernoulli trial (weighted coin flip) with probabiltiy of success
1/dn.
Arrivals of heads-up coins in a sequence of coin flips, under suitable conditions,

can be well approximated with a Poisson process. If we are given a constant λ > 0,
a sequence of probabilities {pn} satisfying npn −→ λ and a few other suitable con-
ditions, then a binomial random variable Bin(n, pn) can be roughly approximated
with the Poisson distribution with rate λ. The suitable conditions are technical
but a good rule of thumb is that when n > 20 and p 6 1/20, or if n > 100 and
np 6 10, we may use the Poisson approximation. In our case, we are talking about
cryptocurrency networks with n typically much greater than thousands of hashes
per second, and with probability of success far lower than 1 in 20 nonces. Hence,
we may approximate the proof-of-work block competition for validation by a Pois-
son process with rate λ = np. More technical arguments can be made toward this
equivalence, but we shall be satisfied and proceed with a Poisson process model.

c©Monero Research Lab Page 6 of 26

Note that, in the Poisson process described above, n is proportional to our global
network hashrate, H(t), and p = 1/dn. The block arrival rate will be λ(t) = np =

βH(t)/dn. Consider β. If difficulty is 1, every nonce is a success, and ifH(t) = 1H/s,
then a block will arrive with probability 1 by time t = 1.0s, yielding a block arrival
rate of 1.0s−1. Hence, we have 1.0s−1 = β 1.0H/s

1 . We conclude β = 1 and we are
free to use the relationship

λ =
H

d

Furthermore, since users assign difficulty dn according to some function of the pre-
ceding difficulties and timestamps, this is a nearly complete justification of our
model in question. As mentioned in Section 1, we largely ignore parent-coin selec-
tion rules in this document, although many interesting questions may arise (see
Section 6). For completeness, however, we shall discuss parent-coin selection for a
moment.
Many decision rules for choosing parent coins could be constructed. One common

misconception of the Bitcoin whitepaper, [5], is that Satoshi Nakamoto did not
propose mining on the longest chain, but, in fact, the chain with the largest cumu-
lative difficulty. In the case of Bitcoin, for which thousands of blocks in a row have
the same difficulty score, this is often (although not always) equivalent to selecting
a chain with the highest block height. Alternative proposals have been made, e.g
in [6] Sompolinsky and Zohar recommend a greedy algorithm seeking the heaviest
subtree approach. Users determine their parent coin by climbing the blocktree from
the genesis block upward, and each time they are faced with a branch, they take
the branch leading to the heaviest subtree. When they have finished climbing the
blocktree, they have found their parent coin.
These approaches are, in fact, identical if we view as a generalized Nakamoto

rule: assign a generalized “score” to each block and choose the parent block by
selecting the block with the largest cumulative score of all preceding blocks. The
only difference between these two methods is how the scores are computed. The
original Nakamoto recommendation was to use difficulty of block B as the score
function, whereas the recommendation by Sompolinsky and Zohar is to use the
cumulative heaviness (in terms of difficulty) of the subtree that has a block B as
its root. From this perspective, we see that the generalized Nakamoto rule may be
sensitive to both choices of score function and difficulty equation.
This is all we shall say on parent-coin selection rules in this document. With that,

we have justified the model of choice All that remains is the focus of this document,
which is to decide how difficulty is to be computed under the model described above.

2.1 Consequences of the model: Stalling
In this section, we discuss how the model presented in Section 2 is sensitive to
sudden changes in hash rate.
Consider a sudden change in hash rate; any traditional blockchain scheme is vul-

nerable to stalling if a large portion of the network suddenly withdraws its par-
ticipation. We are creating a discrete object, the blockchain, from a continuous-
time stochastic process; if the underlying forces giving rise to the creation of the

c©Monero Research Lab Page 7 of 26

blockchain are in a very rapid state of change between blocks, the results may be
disastrous. Consider the scenario in which true network hash rate drops by several
orders of magnitude very suddenly. For example, if Lex Luthor has control of a very
large proportion of some cryptocurrency network, say 99.9%, Lex has some options.
He can certainly re-write the history of the blockchain and give himself all of the
money (the usual 50% attack route). But he could also simply decide to switch off
all of his machines.
Difficulty dn+1 remains unchanged, as it is based on an estimate of previous block

arrival rates. After all, difficulty only updates and adjusts upon receipt of a new
block timestamp. Now, however, block arrival rate is very close to zero blocks per
second. Now the problem is that the network comes to a standstill; blocks are not
arriving because difficulty was very high and a very large actor in the mining space
took their equipment offline. Difficulty will not change before the next block arrives,
which could take an arbitrarily long period of time. No one is mining because blocks
are very rare, and no one is on the network, so blocks remain rare forever, killing
transaction processing capabilities. Of course, a slow decay or smaller jumps in hash
rate will not have this effect.
One standard assumption in cryptocurrencies is that no single attacker controls

more than 50% of the network (otherwise, the ledger may be re-written, and pre-
sumably the currency will lose all value). Hence, we wish to construct a difficulty
algorithm robust against a sudden halving or doubling of net hash rate. If hash
rate is cut in half but difficulty remains the same, block inter-arrival times will be
doubled, and if hash rate is doubled, the inter-arrival times will be halved. Hence,
under the standard 50% attacker assumption, no network will be stalled forever.
However, with sufficiently long block adjustment periods, this can still be disastrous
for a currency. Consider a situation in which the Bitcoin network hash rate is cut in
half immediately after a difficutly adjustment. Transactions will now be processed
in 20 minute blocks, rather than 10 minute blocks, and thus transaction processing
rate on the network will be halved. Furthermore, due to the two week adjustment
period in the Bitcoin difficulty adjustment code, we can expect the network to re-
main in this state for two weeks. This would be an agonizingly long period of time
for transaction processing speeds to be cut in half. Of course, the Bitcoin network
need not be worried about such a scenario, for the size of the Bitcoin network is a
good insulator against such attacks.
Due to this, we are interested in measuring the robustness of the two difficulty

equations of interest (the CryptoNote reference code and our new difficulty equa-
tion) when exposed to sudden large changes in hash rate. In Section ??, we will
investigate hash rate functions that are piecewise constant, and we will investigae
how rapidly the two difficulty adjustment algorithms respond to hash rate changes
of varying magnitude.

2.2 Consequences of the model: Orphaned blocks
In this seciton, we discuss how block arrival rate relates to the production of orphan
blocks. Indeed, we lament the speed of light’s inevitable restriction on propagation
of data and the resulting orphaned coins. Regardless of parent coin selection rule,
regardless of network structure, no matter the speed of our network, we will still

c©Monero Research Lab Page 8 of 26

occasionally see computers producing orphan blocks. If all users mine honestly, this
is the primary source of orphan blocks, but there is nothing to prevent users from
colluding in a selfish mining attack, as described in [2]. Due to some conflict in the
community over the term “orphaned block,” a more descriptive term perhaps could
be dead branches of the blocktree.
Consider the following example modeled after Bitcoin with a block target of

λtarget = 1/600 blocks per second. For the sake of argument, presume the net-
work is a complete graph with a constant N nodes and with the same transmission
speed between any two nodes. We could model transmission time in the network
between node i and node j as µ + eij where each eij is a random variable with
E(eij) = 0 and the mean propagation time is µ. In in [1], Decker and Watten-
hofer measured the average Bitcoin propagation time between nodes to be µ ≈ 6.5

seconds. Although the mean propagation times reported in that publication are
somewhat out of date, they are a sufficient starting point for this discussion. When
a node finds a successful nonce at time t, they announce this fact on the network.
By time t + 6.5, only half the network (on average) has heard of this new block.
What about a computer in the second half of the network, the blind half? A node
in that half of the network hashing between time t and t + 6.5 will have chosen a
different parent coin because it does not have as much information as the nodes in
the first half of the network. Furthermore, one or the other branch will become part
of the main chain eventually; these two events are mutually exclusive. Hence the
total number of coin flips wasted is, with high probability, bounded by

Orphaned flips > E [Number of heads found by half the network in [t, t+ µ)]

and if hash power is distributed approximately uniformly, we can take a simple
average. This approximation works out to be µ · λtarget flips, where λtarget denotes
our target block arrival rate. In this example, this would be about 0.01083 orphaned
blocks on average. In expectation, a Bitcoin miner can expect about 1.083 of their
blocks orphaned for every 100 blocks mined (once every 16-ish hours). In probability,
a Bitcoin miner can be 95% confident that at least one block has been orphaned for
every 275 blocks mined. An individual with 1% of the Bitcoin network’s hashing
power can expect, on average, to receive 1 out of every 100 blocks rewards, which
would occur with rate λtarget/100 = 1/1000 blocks per minute. Hence, to obtain
275 blocks would require about 190 days, and such a miner can be 95% confident
she will see one orphaned block every 190 days.
On the other hand, if we have a coin modeled after Monero, with a block target

time of λtarget = 1.0 blocks per minute (compared with Bitcoin’s λtarget = 0.1

blocks per minute), but we choose an otherwise similar setup as above, we will
see about 0.1083 orphaned blocks per mined block on average, corresponding to
a 6.5-second propagation time. In expectation, a Monero miner can expect 1.083

blocks orphaned/wasted for every 10 mined blocks. In probability, a Monero miner
can be 95% confident that at least one block has been orphaned every 26 blocks
mined. If a miner has 1% of the Monero network’s hashing power, such a miner can
expect to receive 1 out of every 100 block rewards, which would occur with rate
λtarget/100 = 1/100 blocks per minute. With 95% probability, such a miner can be
95% confident she will see one orphaned block every 1.8 days.

c©Monero Research Lab Page 9 of 26

Before drawing any conclusions, note that these estimates rely upon expectations,
which we justified by assuming uniformity in hashing power. This is, of course,
very false in the case of Bitcoin, which can see many orders of magnitude difference
in performance between various mining rigs. In the case of Monero, which has a
somewhat egalitarian proof-of-work algorithm, this assumption is less problematic.
Either way, these values should not be taken as particularly precise. Rather, these
values are intended give a broad idea of a “first-glimpse” into orphan coin analysis.
Having said that, notice that the rate of orphan block arrivals is proportional to the
target block arrival rate: the arrival rate of Monero blocks is ten times the arrival
rate of Bitcoin blocks, Monero miners can expect around 10% of blocks to be orphan
blocks, and Bitcoin miners can expect around 1% of blocks to be orphan blocks.
Hence, setting target block arrival rates lower (say, one block every two minutes or
three minutes) will dramatically reduce the rate of orphans on the Monero network.

3 Difficulty Adjustment Formula
In this section we use the model defined in Section 2 to determine our difficulty
adjustment function and we present it as a sequence of steps. Recall that the overall
goal is to keep the true rate λ(t) to be approximately λ∗, the target block arrival
time. Say that a user is given a blockchain of height n− 1, which has a sequence of
(possibly out-of-order) timestamps and difficulties

B0 = (t0, d0),B1 = (t1, d1),B2 = (t2, d2), . . . ,Bn−1 = (tn−1, dn−1)

Before mining, the user shall place the timestamps in order, i.e. the order statistics,
and consider the top m of these:

t(n−1) > t(n−2) > . . . > t(n−m)

Define ∆n−1T = t(n−1)−t(n−m) for each n > m. Notice that each ∆nT is computed
from the order statistics of a different sequence, and timestamps may occur out of
order. We now compute the sample block arrival rate at height n− 1

λ̂n−1 := m/∆n−1T

This is a running estimate of the instantaneous block arrival rate based on the
maximum likelihood of a Poisson process with a constant rate/intensity. Each time
a new block arrives, the order statistics are recomputed, and the sample block
arrival rate is recomputed from the new order statistics. Our goal is to keep these
samples very close to our target, λ∗. Further, since λ = H/d, each of these block
arrival rates come equipped with an estimate of network hash rate:

Ĥn−1 = dn−1λ̂n−1 = mdn−1/∆n−1T

While time series analysis tools may be used to make predictions of Ĥn, we suspect
that such predictions will not outperform simpler approaches[1]. In our case, for

[1]This may be the subject of a future research bulletin.

c©Monero Research Lab Page 10 of 26

difficulty adjustment, it is unnecessary to predict future values of hash rate (which
is a complicated problem) if we are capable of producing an accurate estimate of
instantaneous hash rate (which is a less complicated problem). Thus we choose
our sequence of difficulties dn so as to allow difficulty to track the simple moving
average of these network hashrate estimates; this is, in fact, equivalent to presuming
network hash rate will remain static and match our current estimate until the next
block arrives. We compute the sample mean of the last ` estimates of network hash
rate

Hn−1 =
1

`

∑̀
i=1

Ĥn−i

=
1

`

∑̀
i=1

dn−iλ̂n−i

=
1

`

∑̀
i=1

mdn−i/∆n−iT

Since λ = H/d, we may keep λ(t) close to λ∗ by choosing

dn+1 =Hn/λ
∗

=
Hn

Hn−1

Hn−1

λ∗

dn+1 =
Hn

Hn−1

dn (3.1)

That is to say, hash rate and difficulty should move in lockstep. At this point, we
should be somewhat comforted. If average network hash rate has doubled, difficulty
should probably double, and if it has halved, difficulty should halve. Notice that
if we were to set ` = 1, we would abandon the simple moving average and simply
have the instantaneous estimate

dn+1 =
Ĥn

Ĥn−1

dn

Returning to the more general case, we have

dn+1 =
Hn

Hn−1

dn

=
1
`

∑`
i=1 dn−i+1λ̂n−i+1

1
`

∑`
i=1 dn−iλ̂n−i

dn

=

∑`
i=1mdn−i+1/∆n−i+1T∑`
i=1mdn−i/∆n−iT

dn

=

∑`
i=1 dn−i+1/∆n−i+1T∑`
i=1 dn−i/∆n−iT

dn

c©Monero Research Lab Page 11 of 26

We may expand this a bit to write it as a difference equation:

dn+1 =

dn
∆nT

+ dn−1

∆n−1T
+ · · ·+ dn−`+1

∆n−`+1T

dn−1

∆n−1T
+ · · ·+ dn−`

∆n−`T

dn

=

(
1 +

dn
∆nT

− dn−`

∆n−`T

dn−1

∆n−1T
+ · · ·+ dn−`

∆n−`T

)
dn

dn+1 − dn =

dn
∆nT

− dn−`

∆n−`T

dn−1

∆n−1T
+ · · ·+ dn−`

∆n−`T

dn

We will use these formulae interchangeably as our difficulty adjustment function,
but for shorthand, we may remember the general inductive rule

dn+1 =
Hn

Hn−1

dn

We now describe how to implement this difficulty adjustment algorithm. Presume
we are given a blockchain of the form

(t0, d0), (t1, d1), . . . , (tn−1, dn−1)

and a difficulty score of the next block to be added, dn. Furthermore, presume some
timestamp, tn, has just been announced on the network and we wish to compute
dn+1. Denote the sequence of hash rate estimates

HASH = Ĥn−1, Ĥn−2, . . . Ĥn−k

where k = min(n,m). Denote the average of this sequence

AVG_HASH =
1

600

600∑
i=1

Ĥn−i

Recall that we reject a block (and its timestamp, tn) as illegitimate if its timestamp
is too far away from the latest timestamp. In particular, the CryptoNote reference
code rejects a block if median(tn−i)

m
i=1 > tn or if tn > 7200 + max(tn−i)

m
i=1. We see

no reason to change this window of acceptance. We execute the following procedure
for any n > 1:
(1) Append (tn, dn) to the blockchain if the timestamp tn is legitimate.
(2) Store the topm blocks’ timestamps temporarily as, say, t̂1, t̂2, . . ., t̂m. If n < m,

store as many as we have.
(3) Sort these stored timestamps into their order statistics, t̂(1) < t̂(2) < . . . < t̂(m).
(4) Compute the span of time represented by these timestamps, ∆nT = t̂(m)− t̂(1).
(5) If n < m, then set λ̂n := n/∆nT . Otherwise, set λ̂n := m/∆nT .
(6) Compute the estimated hash rate during this span of time, Ĥn = λ̂ndn.
(7) Prepend Ĥn to HASH.
(8) If n > m, remove Ĥn−m from HASH.

c©Monero Research Lab Page 12 of 26

(9) Compute the new average of the hash rate estimates. If n < m, set
NEW_AVG_HASH = 1

n

∑n−1
i=0 Ĥn−i. Otherwise, set NEW_AVG_HASH = 1

m

∑m−1
i=0 Ĥn−i.

(10) If n < m, set new difficulty dn+1 = 1. Otherwise, set new difficulty to dn+1 =

dn · NEW_AVG_HASH/AVG_HASH.
(11) Re-set AVG_HASH← NEW_AVG_HASH.
(12) Wait until a new block timestamp, tn+1, to arrive and go back to step (1) when

it does.

4 The Current CryptoNote Code
In Appendix 6.5, we present a re-implementation by Sarang Noether of the reference
CryptoNote difficulty assessment method in python. We describe that difficulty
assessment method here and make comparisons between their difficulty adjustment
algorithm and ours.

The CryptoNote reference code computes the next difficulty score in the following
manner:

(1) Store the top 720 blocks’ timestamps temporarily as, say, t̂1, t̂2, . . ., t̂720.
(2) Store the top 720 blocks’ difficulty scores temporarily as, say, d̂1, d̂2, . . ., d̂720.
(3) Sort the top timestamps in increasing order as t̂(1), t̂(2), . . ., t̂(720)

(4) Eliminate outlying bottom 1/12 and outlying top 1/12 of each of these lists,
leaving (t̂(61), t̂(62), . . . , t̂(660)) and (d̂61, d̂62, . . . , d̂660).

(5) Compute the span of time represented by these timestamps, ∆t = t̂(660)− t̂(60).
(6) Compute the sum of the difficulties, D =

∑660
i=61 d̂i.

(7) The difficulty of the next block, BH+1, given some target block arrival rate λ
blocks per unit time, is then computed from the formula

d̂721 :=
D/λ+ ∆T − 1

∆T
(4.1)

We make some observations about this approach. First, as usual, timestamps
added to the blockchain need not occur in order. In fact, we have no reason to ex-
pect that they will. Sorting the timestamps seems reasonable (in fact, we do this in
our proposed algorithm in Section 3). Further, removing the outlying elements from
the list also seems reasonable. However, notice that the timestamps were sorted sep-
arately from the difficulties. Hence, while an outlying timestamp may be removed,
it’s associated difficulty score is still included in the computation and the associated
difficulty score of some other block is subsequently removed as an outlier (although
the timestamp associated with the removed difficulty score may not have been an
outlier originally!). We discuss this problem in detail in Section 4.1.

Second, notice that the formula for d̂721 may seem a bit strange. Recall that, given
n sample inter-arrival times S1, S2, . . . , Sn, then the maximum likelihood estimate
of the Poisson rate is λ̂ = n/

∑
i Si or rather, if we have n arrivals in a time interval

of width ∆T , then λ̂−1 = n/∆T . These are the formulas used in Section 3. Also
notice that we may replace a sum, D =

∑
i di, with a product of the mean, D = nd.

Since the CryptoNote reference code considers the middle 600 blocks after slicing

c©Monero Research Lab Page 13 of 26

outliers, we may write

d̂721 =
D/λ+ ∆T − 1

∆T

=
λ̂

λ
d+

∆T − 1

∆T

In the CryptoNote reference code, we have a block arrival target of 60.0s per
block, so to observe 600 blocks should take, on average, 36000s, so ∆T−1

∆T ≈ 0.99997

and this formula may be written as, approximately,

d̂721 =
λ̂

λ
D + 1 (4.2)

We provide further discussion of this in Section 4.2.

4.1 Criticisms of the CryptoNote Reference Code: Sorting Timestamps Alone
To see the gravity of the mistake made in re-ordering timestamps in isolation from
the difficulties, consider throwing out the outlying measurements incorrectly from a
more usual example. Let’s say we are measuring the height and weight of everyone
in Huntington-Ashland, West Virginia, the fattest city in America. We line everyone
up and give them a number according to their position in line. This is their index.
We then measure their heights and their weights, proceeding from index 1, the first
person in line, down to index P , the last person in line, where P is the population
of the town. These measurements yield the list of data (H1,W1), (H2,W2), and so
on up to (HP ,WP). Of course, Hi and Wi correspond to the height and weight,
respectively, of the ith person in line. Furthermore, let us presume that we wish to
discard the top 1/12 of the list and the bottom 1/12 of the list, leaving 5/6 of the
population in the list.
However, before analyzing weight by removing outliers, presume we follow a sim-

ilar procedure as the CryptoNote reference code. We order heights separately from
weights:

Ĥ1 = min {H1, H2, . . . ,HP }

Ĥ2 = min
{
H1, H2, . . . ,HP | Hi 6= Ĥ1

}
Ĥ3 = min

{
H1, H2, . . . ,HP | Hi 6= Ĥ1, Ĥ2

}
...

Now, Ĥ1 corresponds to the height of the shortest person in town, but W1 still
corresponds to the weight of the first person in line. Similarly, ĤP corresponds to
the height of the tallest person in town, but WP still corresponds to the weight of
the last person in line. The approach presented by the CryptoNote reference code
would then exclude all pairs (Ĥi,Wi) if the index i is in the first P/12 or in the last
P/12 indices.
What data do we have remaining if we do this? We have ĤP/12+1, ĤP/12+2, . . .,

Ĥ5P/6, which correspond to the heights of the middle quantile. However, we also

c©Monero Research Lab Page 14 of 26

have WP/12+1, . . . ,W5P/6, which corresponds to the weights of the people who were
in the middle of the line. While our initial goal was to discard outliers based on their
height and weight measurements, what we ended up doing was discarding outliers
based on their position in line. While this may have yielded interesting statistical
information about how rapidly overweight people make it into a queue, it is not
relevant to relating height with weight.
With this simple description, we have demonstrated that the methods used in

the CryptoNote reference code for discarding outliers are, at best, inappropriately
applied.

4.2 Criticisms of the CryptoNote Reference Code: Lack of Equilibrium Solutions with
Constant Hash Rate

Our intuitive notion of difficulty says we should expect difficulty to go up when
hash rate has gone up, and for difficulty to go down when hash rate has gone down.
If hash rate has not changed, then difficulty should not change. Intuitively, the
CryptoNote difficulty assessment formula, Equation 4.1, does a satisfactory job.
Indeed, when hash rate doubles, the sample rate λ̂ doubles, and so the difficulty of
the next block will be approximately double the average of the sample blocks.
However, there is a critical problem with the formula, which has to do with equi-

librium solutions to the difficulty equation. Again, our intuitive notion is that, if
hash rate remains unchanged, then difficulty should remain unchanged, and vice
versa. Of course, we may not directly measure hash rate, but we can directly mea-
sure rate of block arrivals. So what happens if blocks have been arriving on target?
This would be the best possible indication that hash rate has remained unchanged.
If blocks have been arriving on target, then λ̂ ≈ λ and so difficulty (approximately)

goes up by one according to Equation 4.1. On the other hand, if difficulty is being
held (approximately) constant at equilibrium, then d̂721 ≈ d and

d̂721 =
λ̂

λ
d+ 1

d ≈ λ̂
λ
d+ 1

(1− λ̂

λ
)d ≈1

But then we must conclude that our sample rate, λ̂, must be quite different from our
target rate, λ, otherwise we would conclude 0 = 1, which is absurd. Indeed, difficulty
may never be held constant when blocks are arriving on target given Equation 4.1.
This analysis of an equilibrium solution suggests that we have verified that λ̂ = λ

does not directly correspond with a static difficulty in the CryptoNote reference
code, violating our intuition about difficulty.

5 Comparing Difficulty Adjustment Performance
In Appendix ??, we present Python code that takes as input a piecewise constant
hashrate function and produces a stochastically generated blockchain in the form of
a sequence of timestamp-difficulty ordered pairs. In this section, we use this code to

c©Monero Research Lab Page 15 of 26

compare the CryptoNote reference code difficulty equation (see Section 4) with the
proposed difficulty equation (see Section 3). Recalling our interest in comparing the
robustness of these equations against sudden changes in hash rate, and recalling that
λ = H/d in the model from Section 2, we investigate several hash rate scenarios with
piecewise constant hash rate functions. The overall goal of the difficulty equations
is to keep observed block arrival rates, λ̂, close to target block arrival rates, λ∗.
Hence, this provides our metric for goodness of a difficulty equation: we compute
the relative error between sample block arrival rate and target block arrival rate for
each of our difficulty adjustment equations and for each hash rate function under
investigation.
We look into four hash rate scenarios. In the first hash rate scenario, we investigate

a piecewise constant hash function of the form H(t) = αbβtc where bxc denotes the
usual floor function, i.e. bxc = max {i ∈ Z | i 6 x}, and where we take α > 1 controls
overall growth rate and 1/β > 0 controls the period of time between hash rate jumps.
This would be an exponential growth model. In the second hash rate scenario, we
investigate a logistic growth model with H(t) = K(1 + Ae−kbβtc)−1 where K is
the carrying capacity of the network, k is the overall population growth rate, the
constant A satisfies A = (K−H(0))/H(0), and where 1/β > 0 represents the period
of time between hash rate jumps. In the third hash rate scenario, we investigate a
hash rate that starts small, jumps to a very large value for a sufficiently long enough
period of time for difficulty to come to equilibrium, and then drops back to a very
small value for the remainder of the simulation (i.e. a tophat function). This way, we
can investigate two population-based hash rate models, and we can also investigate
the scenario presented in Section 2.1. In the final hash rate scenario, we investigate
a square wave function to investigate what sort of effect periodic behavior in mining
has upon network hash rate.

5.1 Exponential Growth in Hash Rate
We find that, for large hash rates, the CryptoNote reference code tracks hash rate
very well. However, the term (∆T − 1)/∆T leads to a roughly linear increase in
hash rate over time when hash rate is small or constant. This is true regardless of
the choice of β, which controls how long hash rate is held constant before changing.
In all investigations of exponential growth in hash rate, we find that the difficulty
equation presented in Section 3 does a better job of tracking true network hash rate
compared to the CryptoNote reference code difficulty equation presented in Section
4. Not only is the relative error between observed block arrival rate and target
block arrival rate generally smaller when we use our difficulty equation instead of
the CryptoNote reference code, our difficulty equation appears to approach true
network hash rate at a faster rate than the CryptoNote reference code.
We numerically validate these claims by investigating two hash rate functions,

H1(t) = 1.001bt/600c, representing a 0.1% increase in hash rate every ten minutes,
and H2(t) = 1.005bt/120c, representing a 0.5% increase in hash rate every two min-
utes. Using a given hash rate function, we generate one blockchain using our new
difficulty adjustment equation described in Section 3:

Bnew = (Bnew,0,Bnew,1,Bnew,2, . . . ,Bnew,nnew−1)

c©Monero Research Lab Page 16 of 26

and we generate another blockchain using the CryptoNote reference code difficulty
adjustment equation described in Section 4:

Bold = (Bold,0,Bold,1,Bold,2, . . . ,Bold,nold−1)

From these blockchain objects, we may compute the sample block arrival rates, λ̂,
at each new timestamp, and we may compare the relative error between λ̂ and the
target block arrival rate, λ∗ as a function of the latest timestamp (which may not
be the top timestamp).

5.2 Logistic Growth in Hash Rate
We again find that, for large hash rates, the CryptoNote reference code does a decent
job. However, when hash rate is small (i.e. the beginning of a logistic population)
or held constant (i.e. the end of a logistic population), the linear growth in the
CryptoNote reference difficulty equation becomes steadily more apparent as time
goes on; the relative error increases regularly over time. The effect of this linear
term on the upswing portion of the logistic curve is difficult to detect, but is still
present. Not only is the relative error between observed block arrival rate and target
block arrival rate generally smaller when we use our difficulty equation instead of
the CryptoNote reference code, our difficulty equation appears to approach true
network hash rate at a faster rate than the CryptoNote reference code.
We numerically validate these claims by investigating two hash rate functions. We

first investigate H1(t) = 10α/(1+A−kbβtc, where A = (10α−10γ)/10γ , representing
a logistic growth model with carrying capacity 10α, initial hash rate 10γ , growth
rate k, and 1/β controls how often hash rate jumps. In particular, with a network
carrying capacity of 1.0 petahash per second (α = 15) and an initial network hash
rate of 1.0 gigahash per second (γ = 9), with β = 1/6h−1 so that hash rate changes
every six hours, and with a maximum growth rate of k = 1.0 megahash per second
per day. We also investigate H2(t) of the same form with a terahash per second
carrying capacity (α = 12), an initial hash rate of 1.0 gigahash per second (γ =

9), and with β = 1/6h−1 so that hash rate changes every six hours, and with a
maximum growht rate of 107 hashes per second, a ten fold increase over H1(t).
Using these given hash rate functions, we generate one blockchain using our new

difficulty adjustment equation described in Section 3:

Bnew = (Bnew,0,Bnew,1,Bnew,2, . . . ,Bnew,nnew−1)

and we generate another blockchain using the CryptoNote reference code difficulty
adjustment equation described in Section 4:

Bold = (Bold,0,Bold,1,Bold,2, . . . ,Bold,nold−1)

From these blockchain objects, we may compute the sample block arrival rates, λ̂,
at each new timestamp, and we may compare the relative error between λ̂ and the
target block arrival rate, λ∗ as a function of the latest timestamp (which may not
be the top timestamp).

c©Monero Research Lab Page 17 of 26

5.3 Big Swings in Hash Rate
This is the fun, true test of the difficulty equations. We set a small constant h0 > 0

and a large constant h1 > 0. We choose a time interval [t1, t2) on which network
hash rate will blast up from H(t) = h0 hashes per second to H(t) = h1 hashes per
second, and then back down to H(t) = h0 again.

H(t) =

h0 t ∈ [0, t1)

h1 t ∈ [t1, t2)

h0 t > t2

Using this function, we can assess the rate at which sample block arrival rate
approaches target block arrival rate after a large jump in network hash rate, and
we can also assess how gracefully a difficulty equation can respond to the converse
situation when hash rate drops. We investigate only values of h1, h0 such that
h0/h1 > 1/100. This would correspond to a user who controls 99% of the network
turning off their equipment, and will lead to block arrival rates dropping by two
orders of magnitude. Investigating smaller values of h0/h1 is unnecessary, for the
consequence would be a large stall and no more blocks.
We again see that our difficulty adjustment equation almost always has a smaller

relative error between sample and target block arrival rates, and that these values
approach each other more rapidly with our difficulty adjustment equation than with
the CryptoNote reference code difficulty equation.

5.3.1 Square Wave Hash Rate
If hash rate behaves in a square wave, we may imagine this as applying a periodic
forcing function to a difference equation. We investigate this scenario for several
reasons. One reason is the possibility that resonance could cause a blowup in network
hash rate. Indeed, if a difference equation has a natural frequency, ω, and a periodic
forcing function is applied with period P that is an integer multiple of ω, we run the
risk of resonance. Another reason to investigate periodic hash rates is because the
CryptoNote reference code uses a dubious method of discarding outliers. Indeed,
in the CryptoNote reference code, the top 720 blocks are studied and the top and
bottom 60 blocks from that list are discarded. Hence, a miner could hop on the
network, mine for 60 blocks, and then hop off the network; such a miner would
never personally experience an increase in difficulty as a response to their activity.
This suggests some time delay properties between hash rates and difficulties which
may be revealed with a periodic forcing function through the expressed phase angle.
To these ends, we investigate periodic square wave functions. We choose h1 >

h0 > 0 and a period, P . We choose some timepoint 0 6 t∗ < P to represent the
time in which network activity is “low.” We then use a periodic extension of the
function

H0(t) =

h0 t ∈ [0, t∗)

h1 t ∈ [t∗, P)

with period P as our hash rate function. We investigate ranges of 1 > h0/h1 > 1/100

as in the previous case, and we investigate several values for the period P ranging

c©Monero Research Lab Page 18 of 26

from P = 1.0s to P = 2m/λ∗, which represents the amount of time it takes to
receive m blocks, where m > ` is the sample size used to estimate block arrival
rates. If the frequency of the periodic hash rate is an integer multiple of difficulty
adjustment period, or outlier discarding periods, or even block arrival rate sample
size, this window should be wide enough to detect an effect.

5.4 Results
In response to exponential or logarithmic hash rate growth, the new difficulty ad-
justment equation performs uniformly better than the CryptoNote reference code;
not only is relative error between sample block arrival rate and target block arrival
rate usually smaller, it decays to zero more rapidly with the new difficulty equation.
The CryptoNote reference code performs worse in the case of logistic growth, but
sample block arrival rate is still usually kept to within a tolerance of BLAH BLAH
INSERT NUMBER HERE compared to target block arrival rate.
In response to the top hat function, the two difficulty equations perform nearly

as well as one another, although the new difficulty equation performed moderately
better in terms of responding to a large decrease in hash rate. In response to the
periodic function, we saw some interesting behaviors.
The most surprising result is that the CryptoNote reference code, which has only

a weak resemblance to our difficulty equation (which was derived directly from a
blockchain growth model), it does a fair to good job of keeping arrival rates roughly
constant in time. The primary concern about this algorithm, it turns out, is not the
response to general hash rate trends. In fact, it is a far bigger problem that users
may exploit the way that outliers are discarded in order to mine without seeing
difficulty change due to their own activity. Nevertheless, our difficulty equation is
still uniformly better than the reference code.

6 Further Questions
In this section, we discuss several routes by which the above work could be expanded
by interested and motivated readers. In general, it is to our benefit to produce
many models and assess their precision and accuracy, and to compare and contrast
multiple hypotheses to determine which model does the best job of representing the
ground truth. In practice, exploring every possibility is unreasonable. We hope that
others extend this work to develop yet better difficulty adjustment methods.

6.1 Time Series Models of Hash Rate
In deriving our difficulty equation, we presumed hash rate of the future will match
the average hash rate of the past. The holy grail of any adaptive algorithm is pre-
diction. Time series analysis tools may be used to make statistical predictions of in-
stantaneous hash rate estimate Ĥn based on previous observations Ĥn−1, Ĥn−2,
An ambitious user could seek a transformation of this time series that is covariance-
stationary and use a SARIMA model, for example, to try to predict the next hash
rate.
In this document, although we are tempted to use heavy statistical machinery to

solve the problem, parsimony suggests that we seek a simpler solution before we
seek a more complicated solution. Models such as SARIMA should only be used

c©Monero Research Lab Page 19 of 26

if ARIMA models are not doing particularly well, which should only be used if
ARMA models are not doing very well, which should only be used if autoregressive
(AR) or moving average (MA) models are insufficient. Furthermore, our difficulty
adjustment algorithm will be unsupervised, whereas time series analysis problems
usually require a modeler to actively tweak and play with data; time series analysis
often does not perform well when fully automated and runs the risk of over-fitting.
In our case, we decided upon using simple moving averages, but an efficient imple-
mentation of a fully automated SARIMA model that punishes overfitting would be
a very interesting application of statistical analysis on a network.

6.2 Population Growth Models of Hash Rate
In this document, we generated hash rate functions in a deterministic way; we
picked formulae for the hash rate functions directly. We did this in order to see how
difficulty equations responded to specific scenarios. However, we could generate
hash rate functions stochastically using population models and various stochastic
implementations of those models.
For example, we may investigate the logistic growth, which obeys the differential

equation H ′ = kH(1 − H/Hmax) where k is maximum growth rate and Hmax

is the carrying capacity of the network. The solution to this equation takes the
form H(t) = K/(1 + Ae−kt) where A = (K − H(0))/H(0), which is the form
used in Section 5.2. However, rather than determining hash rate determinsitically
from this function by plugging in the current time, we could implement a Gillespie
algorithm from [3] to create a stochastic hash rate function whose expectation is the
logistic solution above. This would allow a researcher to investigate how different
assumptions about hash rate growth over time may influence blockchain growth.
One may ask, “why does the author recommend a complication of the hash rate

function here, but in Section 6.1 wishes to argue for parsimony?” The answer to this
is that in Section 6.1, we are discussing the way a user on the network estimates
hash rate. This is the mechanism we are designing, a difficulty equation, which nec-
essarily needs to be simple for computaitonal reasons. On the other hand, here, in
Section 6.2, we are discussing which hash rate function we should use as input to
our blockchain when testing a difficulty equation for robustness and accuracy. We
are asking “how should I test our designed mechanism?” Testing our difficulty ad-
justment equation against a complicated hash rate is a stress test on the mechanism
we have designed.

6.3 Graph Theoretic Modeling and Parent Coin Selection Rules
One other obvious route of extension is to model the cryptocurrency network itself
and investigate the relationships between difficulty adjustment, parent coin selection
rules, and network structure. One can representing a computer network with a
weighted graph, where the weight between nodes represents a propagation delay.
The choice of graph is important, for a five-node network with 1s separation between
each pair of connected nodes, can result in a maximum five second propagation
delay (if the nodes are lined up serially), or could result in a maximum one second
propagation delay (if the nodes are arranged as a pentagram in a complete graph
with five nodes, K5). Any graph choice must be justified; equating the average

c©Monero Research Lab Page 20 of 26

and standard deviation in propagation delay may be sufficient for some statistical
purposes, but by no means capture the details of a complicated network.
The presence of propagation delays will necessarily lead to competing chains,

which necessitates a choice of parent coin selection rules, such as the “longest chain”
rule first proposed by Nakamoto in [5], and the so-called GHOST rule, first pro-
posed by Sompolinsky in [6]. The GHOST rule selects the parent coin by seeking
the heaviest observed sub-tree at each fork in the blocktree, and may exhibit cer-
tain advantages over the Nakamoto rule. It is possible that the choice of graph
structure, parent coin selection rule, and difficulty adjustment formula are deeply
inter-related. Given a particular graph structure and difficulty adjustment formula,
a cryptocurrency network may prefer the GHOST rule over the Nakamoto rule, or
vice versa. Given a particular graph structure and a particular parent coin selection
rule, some difficulty adjustment formulae may make no sense, and some may per-
form very well. Finally, given a particular parent coin selection rule and difficulty
adjustment formula, there may be a graph structure for which these choices perform
optimally. These questions could lead to very efficient creations.

6.4 Stalling in the Event of Sudden Hash Rate Drop
The problem with stalling cryptocurrency networks in the event of a large hashrate
drop can be mitigated in at least one of two ways. The reason the network may
stall is because the current estimate of difficulty remains unchanged until a block
is added. The usual maximum likelihood estimate (MLE) of a Poisson rate doesn’t
use all the data we have available. The first way we recommend mitigating a stalling
event involves exploiting the fact that we know how long it has been since the last
block arrival. This is additional information we have available that is not yet being
used. The second way we recommend mitigating a stalling event involves contact
with a third party to obtain information about their own, distinct blockchain, whcih
is also additional information we have available. Either or both of these avenues
could present interesting lines of inquiry.
Our first avenue is to incorporate the right-censored maximum likelihood estimate

of a Poisson process rate. Indeed, in our derivation in Section 3, we assume network
hash rate remains static and match our current estimate until more information
arrives in the form of the next block to be added. However, at any given time, we
actually have more information avaiable; that is to say, we know that some block
will be arriving at some point after the current time. Assume that all users are
reporting their timestamps honestly. Rather than declaring a blockchain to be a
sequence of timestamp-difficulty ordered pairs together with a future difficulty of
the form

(t0, d0), (t1, d1), . . . , (tn−1, dn−1), dn

and with no a priori concept of time attached to the blockchain object (outside of
it’s timestamps), we could alternatively define a blockchain in the following way.
Presuming some height n, we may define a blockchain to consist of a sequence of
timestamp-difficulty ordered pairs together with a time, t, and a random variable,

c©Monero Research Lab Page 21 of 26

τ , of the form

(t0, d0), (t1, d1), . . . , (tn−1, dn−1), (τ, dn)

where the only information we have about τ is the distributional fact that τ > t

with probability 1. If we wish to incorporate data about timestamp manipulation,
this may be stored in any distributional assumptions we place on τ .
The way we could implement this is to take our list of known timestamps,

t0, t1, . . . , tn−1, include the current time, t∗, and sort the results into their ordered
statistics, t(0) < t(1) < . . . < t(n). We then simply use the MLE as usual from here. If
all timestamps are being reported honestly on a network with no propagation delays,
then we automatically have the ordering t0 < t1 < t2 < · · · < tn−1 < t∗. However,
since timestamps may occur out of order, it is possible that t(n−i) < t∗ < t(n) for
some i = 1, 2,
One problem with this approach is that now every user may use their own time,

t∗, to determine current difficulty. As a consequence, two users with the same copy
of the blockchain may compute different values for “next difficulty” and there is no
way to verify which, if any, are correct. Users with the same data will only compute
the same difficulty if they also have synchronized clocks. To worsen matters, it
seems this approach leaves open the possibility of a vulnerability. It will be in the
users’ best interest to obtain a smaller estimate of block arrival rates, if possible,
in order to obtain a small estimate of hash rate, and therefore a smaller difficulty.
Hence, using the right-censored maximum likelihood approach, each user would set
their local clock very far ahead in the future to take advantage of low-difficulty
mining. This would cause an upward drift in timestamps compared to the true
time. This upward drift may be bounded and slow, in which case the risk of blocks
being rejected by the rest of the network will prevent the behavior from getting out
of control. On the other hand, the upward drift may be very fast or unbounded.
Timestamps on the top of the blockchain will eventually be so far out of whack with
reality that no honest miners will get their blocks accepted by relaying nodes.
Our second avenue is to tie the estimate of block arrival rate on the network with

the block arrival rates on other networks. For example, if a user has observed n

Bitcoin blocks validated since the last Monero block has been validated, she may
reasonably presume that either (a) she has a connectivity issue with the Monero
network, (b) the Monero network hash rate has suddenly dropped by a factor of
10n, or (c) the Bitcoin network hash rate has suddenly increased by a factor of 10n.
Due to the size of the Bitcoin network, option (c) is almost certainly false in general.
This seems like an elegant solution, but any time we use a third party, verifiability
and security become issues. Working out the details of either of these proposals
could lead to an enormous improvement to the resilience of any cryptocurrency
network.

6.5 Damping
We may wish to damp the amount of change we apply to our difficulty in the case
that we believe that timestamps have recently been manipulated. To this end, recall
the convenient property of Poisson processes with rate λ: the mean inter-arrival time

c©Monero Research Lab Page 22 of 26

is 1/λ and the variance in the inter-arrival times is 1/λ2. Hence, if mean inter-arrival
time and standard deviation of inter-arrival times are very different, this suggests
that timestamps have been manipulated and the process underlying the timestamp
creation is not a homogeneous Poisson process.
Hence, testing the squared mean against the variance is a test for whether a process

is Poisson or not. Given a sequence of inter-arrival times, say {S1, S2, . . . , Sn}, a
test of whether these inter-arrival times came from a genuine Poisson process is
to compare the squared sample mean S

2
=
(
n−1

∑n
i=1 Si

)2 with the (unbiased)
sample variance Var(S) = (n−1)−1

∑n
i=1(Si−S)2. Indeed, taking the whole Monero

blockchain as a sample, we observe about a 22% difference between mean and the
standard deviation! This suggests that, throughout the history of Monero, quite a
bit of timestamp manipulation has occurred, although at this point it is not clear to
the Monero Research Lab how to quantify the amount or degree of manipulation.
When the squared mean and variance are vastly different, we distrust the notion

that the underlying process is Poisson. Furthermore, if this lack of Poisson-icity
is due to an attacker manipulating timestamps, then the mean inter-arrival time,
which only utilizes T(1) and T(N), the first and last times of arrival, is particularly
vulnerable to a single attacker changing their timestamp. On the other hand, the
sample standard deviation utilizes all inter-arrival times equally in it’s computation.
Hence, rather than using λ̂ = 1/S, another approach is to use λ̂ = 1/

√
Var(S).

Hence, rather than computing dn+1 by a multiplicative factor Hn/Hn−1, consider
an equivalent additive change in difficulty, dn+1 − dn = (Hn−Hn−1

Hn−1
)dn. The idea of

this approach is to scale this change in difficulty by a factor α which will depend
on both the squared sample mean and the sample variance of inter-arrival times.
If squared sample mean and sample variance are approximately equal, we will set
α ≈ 1, and if sample meean and sample standard deviation are different, α→ 0. To
this end, let S

2
denote the squared sample mean of inter-arrival times and denote

Var(S) denote the sample standard deviation. Many choices of α are reasonable.
For example, we may choose

α = Exp
[
−
∣∣∣S2 −Var(S)

∣∣∣ /S2
]

Notice that, since S
2
is never zero, since all blocks must arrive with at least

one second separating them, this expression is well defined. Also notice that α
has the property that when S

2
= Var(S), we have that α = 1, and whenever∣∣∣S2 −Var(S)

∣∣∣ /S2 → ∞, we have that α → 0. The scaling in the denominator of
the exponent provides a probabilistic guarantee that the momentum term α stays
reasonable close to 1 under manipulation-free circumstances.
We can consider α a momentum term, where a close match between a true Poisson

process and the observed inter-arrival times yields almost no momentum, or we can
consider α a trust value, where a close match yields a high trust level. Using this
interpretation, a 22% variance between squared sample mean and sample variance
would yield an 80.25% trust rating. On the other hand, a mere five percent difference
between squared sample mean, S

2
, and sample variance, Var(S), will provide a

trust value of 0.95122, or rather, about a 95% trust rating. An unreasonably large

c©Monero Research Lab Page 23 of 26

difference between squared sample mean and sample variance, say 50%, would yield
a trust value of 0.5 6 − ln(α), or rather α > 0.606 or a 60.6% trust rating.
As we have previously observed, there is, historically, a 22% difference between

squared sample mean, S
2
, and sample variance, Var(S). This provides a good ref-

erence point for examining this momentum term. A 22% difference would provide
− ln(α) 6 0.22, yielding 0.8025 6 α. That is to say, our momentum term would
cause our difficulty to adjust at around 80% it’s maximal rate.

c©Monero Research Lab Page 24 of 26

Appendices
CryptoNote Difficulty Reference Code

DIFFICULTY. py
Gives d i f f i c u l t y in format ion over time f o r b l o c k s wi th g iven

timestamps
Input : b l o c k_ f i l e WINDOW CUT LAG CHECK_WINDOW [MODE]
b l o c k_ f i l e format : one l i n e per i n t e g e r timestamp
WINDOW: b l o c k s to be used when computing d i f f i c u l t y (720 in

p r a c t i c e)
CUT: b l o c k s on each s i d e o f the b l o c k window to exc lude (60

in p r a c t i c e)
LAG: how fa r behind we want to be (15 in p r a c t i c e)
CHECK_WINDOW: number o f b l o c k s to use f o r median c u t o f f (60

in p r a c t i c e)
[MODE] : 0 = don ’ t s o r t d i f f i c u l t i e s (d e f a u l t) ; 1 = so r t

d i f f i c u l t i e s
Output : b l o c k information , one l i n e per b l o c k
l i n e format : b lock_id timestamp n e x t_d i f f i c u l t y

c umu l a t i v e_d i f f i c u l t y

import sys
from math import f l o o r

window = int (sys . argv [2])
cut = int (sys . argv [3])
l ag = int (sys . argv [4])
check_window = int (sys . argv [5])
t a r g e t = 60
mode = 0
try :

i f int (sys . argv [6]) == 1 :
mode = 1

except :
pass

print "#␣window␣ i s ␣" + str (window) + "␣and␣ cut ␣ i s ␣" + str (cut
)

Read timestamps in t o an i n t e g e r array
b l o c k_ f i l e = open(sys . argv [1] , ’ r ’)
timestamps = []
for l i n e in b l o c k_ f i l e :

timestamps . append (f l o o r (f loat (l i n e . s t r i p ())))
c umu l a t i v e_d i f f i c u l t i e s = []

print "#␣ read␣" + str (len (timestamps)) + "␣ b locks "

Apply the median ru l e
for i in range (check_window , len (timestamps)) :

try :
median = sum(timestamps [i−check_window : i])
i f timestamp [i] < median :

timestamp . pop (i)
except :

pass

c©Monero Research Lab Page 25 of 26

Compute the d i f f i c u l t y f o r the next b l o c k
def nex t_d i f f i c u l t y (timestamps , c umu l a t i v e_d i f f i c u l t i e s) :

i f (len (timestamps) > window) :
timestamps = timestamps [0 : window]
c umu l a t i v e_d i f f i c u l t i e s = cumu l a t i v e_d i f f i c u l t i e s [0 :

window]

l ength = len (timestamps)

Run some san i t y checks
i f len (timestamps) > window or len (c umu l a t i v e_d i f f i c u l t i e s

) > window or len (timestamps) != len (
c umu l a t i v e_d i f f i c u l t i e s) :
raise Exception (" I n c o r r e c t ␣number␣ o f ␣ b locks ")

i f l ength <= 1 :
return 1

i f window < 2 :
raise Exception ("Window␣ i s ␣ too ␣ smal l ")

i f (2 ∗ cut > window − 2) :
raise Exception ("Cut␣ i s ␣ too ␣ l a r g e ")

timestamps . s o r t ()
i f mode == 1 :

c umu l a t i v e_d i f f i c u l t i e s . s o r t ()

Compute the cut i n d i c e s
i f (l ength <= (window − 2 ∗ cut)) :

cut_begin = 0
cut_end = length

else :
cut_begin = int (f l o o r ((len (timestamps) − (window −

2 ∗ cut) + 1) / 2))
cut_end = cut_begin + window − 2 ∗ cut

time_span = timestamps [cut_end−1] − timestamps [cut_begin]
i f time_span == 0 :

time_span = 1

total_work = cumu l a t i v e_d i f f i c u l t i e s [cut_end−1] −
c umu l a t i v e_d i f f i c u l t i e s [cut_begin]

i f total_work < 0 :
raise Exception ("Cannot␣have␣ negat ive ␣ t o t a l ␣work")

Assume high i s zero ; t h a t i s , no ove r f l ow
low = total_work ∗ t a r g e t
i f low + time_span − 1 < low :

return 0
else :

return int (f l o o r ((low + time_span − 1) / time_span)
)

Sta r t f e e d in g b l o c k s in t o the d i f f i c u l t y a l gor i thm
print "#␣block ␣ t imestep ␣ n ex t_d i f f i c u l t y ␣ cumu la t i v e_d i f f i c u l t y "
for i in range (len (timestamps)) :

o f f s e t = (i + 1) − min(i + 1 , window + cut)
i f o f f s e t == 0 :

o f f s e t = 1

d i f f i c u l t y = nex t_d i f f i c u l t y (timestamps [o f f s e t : i] ,
c umu l a t i v e_d i f f i c u l t i e s [o f f s e t : i])

c©Monero Research Lab Page 26 of 26

i f i == 0 :
c umu l a t i v e_d i f f i c u l t i e s . append (0)

else :
c umu l a t i v e_d i f f i c u l t i e s . append (c umu l a t i v e_d i f f i c u l t i e s [i

−1] + d i f f i c u l t y)

Output
print ’ ␣ ’ . j o i n (map(str , [i , timestamps [i] , d i f f i c u l t y ,

c umu l a t i v e_d i f f i c u l t i e s [i]]))

New Difficulty Reference Code

References
1. Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin network. In Peer-to-Peer

Computing (P2P), 2013 IEEE Thirteenth International Conference on, pages 1–10. IEEE, 2013.
2. Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial

Cryptography and Data Security, pages 436–454. Springer, 2014.
3. Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The journal of physical

chemistry, 81(25):2340–2361, 1977.
4. Daniel Kraft. Difficulty control for blockchain-based consensus systems. 2015.
5. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
6. Yonatan Sompolinsky and Aviv Zohar. Accelerating bitcoin’s transaction processing. fast money grows on

trees, not chains. IACR Cryptology ePrint Archive, 2013:881, 2013.

	Abstract
	Introduction
	Blockchain growth model
	Consequences of the model: Stalling
	Consequences of the model: Orphaned blocks

	Difficulty Adjustment Formula
	The Current CryptoNote Code
	Criticisms of the CryptoNote Reference Code: Sorting Timestamps Alone
	Criticisms of the CryptoNote Reference Code: Lack of Equilibrium Solutions with Constant Hash Rate

	Comparing Difficulty Adjustment Performance
	Exponential Growth in Hash Rate
	Logistic Growth in Hash Rate
	Big Swings in Hash Rate
	Square Wave Hash Rate

	Results

	Further Questions
	Time Series Models of Hash Rate
	Population Growth Models of Hash Rate
	Graph Theoretic Modeling and Parent Coin Selection Rules
	Stalling in the Event of Sudden Hash Rate Drop
	Damping

	Appendices

