
Detecting Insults in Social Commentary

Prashant Ravi
Department of Computer Science

University of Illinois at Urbana Champaign
email:ravi7[at]illinois[dot]edu

Abstract

This report gives an overview of the various ma-
chine learning algorithms implemented to detect
certain comments that may appear insulting to
another participant on a social networking plat-
form. Feature selection was performed using n-
grams, and the WEKA machine learning toolkit
was used to build supervised learning clasifiers,
that provided an accuracy of 82% on the test
dataset. The dataset was obtained from the
popular data science competition portal, Kag-
gle.

1 Introduction

Machine learning is an important field today
with mass availability of internet access, and
with it the amount of context-specific data that
could be analysed to optimize daily pracitices.
Be it Netflix’s movie recommendation system or
Facebook’s face recognition software, the com-
mon underlying magic owes it to machine learn-
ing algorithms. A big motivation for this, is that
humans are great at finding patterns in data
sets, and its true that if we had enough humans
to find these complex patterns, they may ac-
tually perform better than computers, but with
the amount of data that has amassed due to the
’Internet of things’ its practically impossible to
have a human eye to go over such large data
sets. Enter, machine learning, which for this
very reason has become an indispensable tool
for the analysis of data. While, the internet of
things has completely revolutionized the com-
munication industry, sometimes, users of these
websites break the terms and conditions of the
host website that strictly prevent the usage of
abusive language. In this project we will apply
and analyse some machine learning algorithms
that are bundled in WEKA (Waikato Environ-
ment for Knowledge Analysis), to a data set to
predict if a comment would be considered in-
sulting or not, to a peer on a social networking
platform.

2 Methodology

The basic methodology can be described by the
following figure, which will be further elabo-
rated on, in the following subsections.

2.1 Preprocessing

The data was presented in the form of a csv
file on the Kaggle data science competition por-
tal and this data had to be preprocessed before
any further analysis could be carried out. The
preprocessing involved the removal of any non-
printable hexadecimal characters, special char-
acters and html tags. The raw data, for example
contained text such as ”A \\xc2\\xa0majority
of Canadians can and has been wrong before
now and will be again.\\n Unless you’re sup-
portive of the idea” would be converted to ”a
majority of canadians can and has been wrong
before now and will be again unless youre sup-
portive of the idea.” This was performed in or-
der to get a cleaner training data set. Regex,
was used to perform the parse and discard of
these special characters, and the rest of the text
was converted to lowercase for simplicity. The
second part of the preprocessing step involved
the stemming of tokens, to reduce the words
to its roots, however in the final iteration of
the code write up, this step was discarded be-
cause some of the insults were being wrongly
tokenized and a reduction in overall accuracy
occured.



2.2 Feature Extraction

The feature extraction step involved the tok-
enizing of the words to make a ”bag of words”
that could be later analysed using the WEKA
toolkit. For this step, the StringToWordVec-
tor WEKA command-line tool was very effec-
tive in making a word-vector for the data sets.
The word vector was constructed such that
words occuring in a sentence were presented
in this vector along with its frequency. For
this feature-extraction step n-grams, specifically
1,2,3-grams were used to find 1,2 or 3 consec-
utive words in each sentence of the training
set. For example, if the following phrase ”a
cat walk” is considered, a 2-gram would be ”cat
walk”. While genereating these n-grams it was
observed that a lot of common words were oc-
curing in the attribute list that won’t add any
importance to the feature set due to its com-
mon use in sentence structuring. Words such as
”the”, ”is”, ”and” are examples of 1-grams that
should be ignored. In order to carry this out,
a stopwords list that is provided by WEKA by
default was used to ignore 1-grams that won’t
add value to the feature set.

2.2.1 Final feature set

2.2.1.1 Word Vectors : Vector for each
comment that consists of tokens of words that
occur in the comment along with its Term fre-
quency x Inverse document freqeuncy, com-
monly known as tf-idf score. This score mea-
sures fraction of the occurence of an attribute
in the given comment over the entire given doc-
ument. As discussed by Priya Goyal and Kalra
(2013) a keyword’s term frequency is the num-
ber of times the wor appears in the title. Its doc-
ument frequency is the number of title the word
appears over the total number of titles. The
keywords’s tf-idf weright is its term frequency
divided by its document frequency.

2.2.1.2 Length of string : The length of
the comment was included as a numeric at-
tribute

2.2.1.3 Number of special characters :
The number of special characters such as ”¿!@¡”
that were present in the original comment. But
these don’t inculde commas, semicolons and pe-
riod signs as these are syntax that are required
by every sentence, and hence not a meaningful
feature.

2.2.1.4 Number of upper case letters :
It was observed that comments usually con-
tain expletives that were exclaiming or loudly

putting forward the abusive terms in upper case
letters. For example. ”you SUCK!!!!” is an
easy illustration. In order to retrieve the term
”SUCK” all the special characters were replaced
with spaces and eventually in order to make to-
kenizing simpler, the uppercase terms were con-
verted back to lower case.

2.3 Feature Selection

Feature selection is performed to automatically
search for the subset of the attributes in the
dataset to find the one with with the highest
accuracy. We looked at how we were able to
condense the feature set of several words in com-
ments and their upto 3-grams but for such a
large data set how did we come up with the
1000 ”top” features, ranked per-class basis. A
feature slection algorithm was in effect that by
the statistical tool, ”Chi-Squared Test” was able
to find the best 1000 features from the set of
nearly 5000 features that we obtained from the
training data set.

2.3.0.5 Chi-Squared Test :The chi-
squared test is in effect to reduce the number
of attributes that we have in our feature set of
word vectors.It does so by testing the indepen-
dence of two events. To be more specific of its
functionality and its relation to our problem,
it tests the dependence of the occurnce of
the given attribute to the occurence of the
class isGood, isBad that we have set up to
distinguish between an insult or not.

Then to find the dependence of this vari-
able ”fuck” to insult is given by the expection

E(’fuck’, isBad) = N(′fuck′)∗N(′isBad′)
N where N

is the total number of rows, and the numera-
tor is read as the number of rows with attribute
”fuck” times the number of attributes that have
the class attribute ”isBad”. And this is true for
any n-gram variable too. Then to measure the
dependence the formula is given by

χ2 =
∑

x
(Ex(x,y)−E(x,y))2

E(x,y)

where Ex(x,y) reads as the experimental ob-
servation of the attribute x, and class attribute
y as we look through each of the atttributes,
the chi-square is summed up and 1000 variables
with the highest dependence to the class at-
tribute are selected by this feature selection al-
gorithm. The end goal for such a procedure is



to ultimately avoid overfitting, reduce memory
consumption , find meaningful attributes that
would later aid decision tree based algorithms
to find splitting nodes and in general improve
the speed of such algorithms due to the size of
the feature space.

2.3.0.6 Batch Filtering After realizing
the attribute set, a batch filter was run to tok-
enize the word vectors for both the training set
data and the test data. This assures that both
data sets contain the same set of attributes that
would be evaluated by the different classifiers.

2.4 Classification

Several different classifiers were appplied on the
arff files that were generated by carrying out the
feature extraction and feature selection phases,
but in the following subsection only the classi-
fiers with the highest accuracy will be discussed
for the evaluation of performance on test data
set. In addition, k-fold cross validation was
performed on the training set before evaluat-
ing the test data set, and in this project, for
all classifiers, the default k is set to 5. The
advanatages of performing k-fold cross valida-
tion included that it prevents overfitting of the
classifier model and provides generality to the
model that could later better classify an inde-
pendent data set, such as the test data set. The
size of test data set here is 2649 instances and
train data set is 3948 instances.

2.4.1 Support Vector Machines

Support Vector machines function by putting
the training data instances in an n-dimensional
vector space to find a clear gap or margin be-
tween the support vectors that best represent
the different classes of the space.Next, the test
data instances are also mapped to this vector
space and is classified to be an Insult or not
Insult based on which side of the gap, the at-
tributes cause the instance to fall . Refer Table
1 which contains metrics based on test instance
classification and other parameters. The C pa-
rameter was chosen to be a low value to avoid
overfitting.

2.4.2 Naive Bayes Multinomial

Naive Bayes Multinomial was expected to have
very good results since its ideal for text classifi-
cation but it performed poorly. A good reason
for this could be that the test data set contained
several expletives that were represented alter-
natively such as ”you are a f00l” which by the
human eye is read as ”you are a fool” but while

Metric Value

Correctly Classified Instances 81.564%
Cross-Validation Accuracy 78.2366%
C parameter 4.0
Mean Absolute Error 0.26319

Table 1: Evaluation metrics using Support Vector
Machine Classifier

tokenizing it was not mapped correctly to token
with high prior probability of being a negative
term.

Metric Value

Correctly Classified Instances 75.06%
Cross-Validation Accuracy 74.91%
Mean Absolute Error 0.1881

Table 2: Evaluation metrics using Naive Bayes
Multinomial Classifier

2.4.3 Random Forest

Random forest is a spin-off of the decision learn-
ing algorithm where many decision trees are cre-
ated over an arbitrary subspace and the decision
at each split of the tree is done by a random pro-
cess instead of a discrete optimized split, and
the mode of the classfications of these individ-
ual decision trees forms the final output classi-
fication, in our case Insults/Not an insult. A
parameter that needed to be set was the maxi-
mum depth of tree. This is an important factor
to determine classifier accuracy as deeper trees
reduce bias and more trees reduce variance. The
max depth of the trees was set to be the maxi-
mum possible, which is the size of attribute set.

Metric Value

Correctly Classified Instances 79.675%
Cross-Validation Accuracy 78.2366%
Mean Absolute Error 0.1841

Table 3: Evaluation metrics using Random Forest
algorithm

2.4.4 AdaBoostM1

Kohavi (1996) discusses the NBTree which is
a combination of the decision tree classifier
and naive bayes classifier where the decision-
tree nodes contain univariate splits as regular
decision-trees, but the leaves are comprised of



Naive-Bayesian classifiers. As we can see the
classifier when used as the WeakLearn algo-
rithm for the AdaBoostM1 wth iteration count
as 100 we see the following results. Table 4 illus-
trates the metrics evaluated using this approach

Metric Value

Correctly Classified Instances 79.93 %
Incorrectly Classified Instances 20.07 %
Mean Absolute Error 0.1696

Table 4: Evaluation metrics using AdaBoostM1 with
NBTree WeakLearn

In addition, the (LMT) logistic model tree
classifier was also used as a WeakLearn algo-
rithm that replaced the NBTree classifier in the
previous step. The objective was to learn weak
learners that minimize training error on each it-
eration of the set and thus resultant hypthesis is
an aggregation of weak learners that when com-
bined, provide a strong learning classifier. The
LMT classifier when used as the weka learner
with same number of iterations was observered
to perform better than the NBTree classifier on
the test data set.

Metric Value

Correctly Classified Instances 80.846 %
Cross-validation Accuracy 79.14%
Mean Absolute Error 0.1291 %

Table 5: Evaluation metrics using LMT Classifier as
WeakLearn for AdaBoostM1 algorithm

3 Related Work

As discussed by Heh (2013), there were a num-
ber of things that increased accuracy to his
project. These include, adding Google’s bad
word list to count the number of bad words in
the sentence as a feature, the inclusion Stan-
ford’s NLTK tokenizer and the Lancaster Stem-
mer. Such methods greatly increased the cross
validation accuracy as shown in Figure 1.

Another interesting feature that was applied
by Priya Goyal and Kalra (2013) was the in-
clusion of the count of words that followed the
phrases such as ”you are a”, ”you’re” ”you”
”your”. It was observed that this feature was
a constant theme in abusive comments, as they
were the most direct way to append an insult
to one of these second person phrases. In their
paper, Priya Goyal and Kalra (2013) discuss

Figure 1: Figure: Cross Validation Accuracy Mea-
sure Heh (2013)

how they had originally had a classifier right
around 82% accurate and with the inclusion
of this feature it rose to 86%, as it was found
to be a strong classifier. Recently, another pa-
per was published on Twitter insult detection,
by Guang Xiang (2012), performing statistical
topic and lexicon modelling on a set of Twitter
tweets, using Bootrapping algorithms in NLP.

4 Future work

4.1 Adding a customized stop words
and bad words list

The default WEKA stop words list was used
for this project however in the future, a more
targeted stop words list could be generated. A
dictionary of commonly used bad words was re-
leased by Google, which they use to flag abuses
on their own social media platforms. By inte-
grating a bad words list and a words list that
contains common religions, sexual orientations,
and generally racy topics could also be included
as a feature where its presence in a comment
would be a good classifier for insult detection.

4.2 Ability to detect sarcasm

Sometimes people use sarcasm to hint offensive
dialog. An example of this, is when a user of-
fends a man of color by saying, ”you are too
fair skinned to be invited to the party”. Cur-
rently, this program is unable to detect such
sarcastic comments that may offend users but
with the help of NLP projects such as Stan-
ford’s coreNLP this may be achieved by further
understanding the structure of the sentence con-
structed.

4.3 Collecting more data

To better classifier our data we could collect
more data from the social networking platform
such as the userIds of the sender and the re-
cipient, the location and date/time of comment
posted and the age of users to better classify



the instances. For instance, some phrases such
as ”that artist’s voice is sick!” would be inter-
preted with a positive connotation to a young
crowd but an older crowd would find it insult-
ing. In addition, certain users who resort to
expletive terms would be more likely to do so,
in the future, so it would be a good classifier.
Furthermore, data such as number of threads
following a post could also be a good classi-
fier, as its natural that one insult follows many
more counter insults. Such a strong classifer
constructed from these attributes could help so-
cial networking platforms to take some action
against the users violating their terms and poli-
cies or at least dissuade users from using such
expletives.

5 Conclusions

It is clear from the metric tables of each of the
classifier algorithms that the best classifier in
terms of the most number of correctly classified
instances is the SVM algorithm , with a close
second being the AdaBoost.M1 algorithm using
the LMT algorithm as its weakLearn algorithm.
However, the classifier performance would still
be considered low,overall, and some of the tech-
niques that could be applied to increase the ac-
curacy have been discussed in Related Work and
Future Work.In addition,it was observed that
some of the most negatively weighted words in-
cluded ”fuck” and ”idiot”. We can conclude
that we have obtained 82% accuracy on the
test data set and that the analysis of machine
learning is based on not only the algorithm that
we apply but also how we handle the data.

6 Acknowledgement

This was project was made possible by the guid-
ance and support of Professor Dan Roth who
introduced the students to the WEKA machine
learning tool early on in the semester in the form
of a problem set. This added some comfort with
using the tool and eventually led to the execu-
tion of this project.

References

Ling Wang Jason I. Hong Carolyn P. Rose
Guang Xiang, Bin Fan. 2012. Detecting of-
fensive tweets via topical feature discovery
over a large scale twitter corpus. [Online; ac-
cessed 10-Dec-2014].

Kevin Heh. 2013. Detection of insults in social
commentary, December. [Online; accessed 8-
Dec-2014].

Ron Kohavi. 1996. Scaling up the accuracy
of naive-bayes classifiers: a decision-tree hy-
brid. In Proceedings of the Second Inter-
national Conference on Knowledge Discov-
ery and Data Mining, pages 202–207. AAAI
Press.

Dr. Amitabha Mukherjee Priya Goyal and
Gaganpreet Singh Kalra. 2013. Peer-to-peer
insult detection in online communities.


