
Government of Russian Federation

FEDERAL STATE AUTONOMOUS EDUCATIONAL

INSTITUTION OF HIGHER PROFESSIONAL EDUCATION

National Research University

Higher School of Economics

FACULTY OF COMPUTER SCIENCE

Bachelor’s programme

APPLIED MATHEMATICS AND INFORMATICS

Department of Data Analysis and Artificial Intelligence

Course work

Data acquisition from mobile sensors

Bachelor’s student 143 AMI
Kashkinov Matvey Il’ich

Scientific Supervisor
PhD, Assistant Professor,
Attila Kertesz-Farkas

Moscow 2016

Abstract

Our goal is to use data from Android phone sensors to determine whether
the device is located indoors or outdoors. To achieve this we have decided
to use existing machine learning methods. In this study we describe the
process of gathering data and choosing from a wide range of possible ap-
proaches to analyze it to reach the best result.

2

Contents

1. Introduction 4

2. Application description 5
2.1. Implementation details . 5
2.2. User interface . 5

3. Data acquisition 8

4. Data processing 9
4.1. Preprocessing . 9
4.2. Decision Tree . 11
4.3. Support Vector Machine with linear kernel 16
4.4. Logistic regression . 17
4.5. Result . 18

5. Implementing classifier 19

6. Conclusion 20

3

1. Introduction

Nowadays smart phones have become an integral part of our life. That
means that we carry a number of different sensors in our pockets. If prop-
erly gathered and processed, the data from those sensors can be used to
solve interesting tasks.

The purpose of this study is to implement an application for an Android
device that could be used to predict whether it is located inside or outside
of the building.

The structure of this paper is organized as follows. The second section
presents a thorough presentation of the application interface with screen
shots and elementary manual. In section 3 we provide the description of
the process of gathering data. We have considered some popular machine
learning methods such as Decision Trees, Logistic regression and Support
Vector Machine which are described in detail in section 4 that also contains
information about how the data was preprocessed.

4

2. Application description

2.1. Implementation details

The main aim of this work is to create an Android application that can
be used to predict whether the phone is located inside or outside of the
building.

The secondary task was to find a method to gather the data from the
sensors of the Android device. Both of these functions were implemented
in the application.

We used Android Studio 2.1 environment and Lenovo A606 as a testing
device.

2.2. User interface

Application interface is presented on the screen shot below. Main area
contains current readings from all the sensors:

• Accelerometer

Shows acceleration on three axes

• Proximity

Shows 0 if there is an object right in front of the face of the device
and 1 otherwise

• Light

Shows light strength

• Signal Strength

Shows mobile networking signal strength

• Satellites

For each visible GPS satellite shows signal-to-noise ratio, azimuth,
elevation and unique pseudo random number

5

Figure 1. Interface

In the footer of the application window three button menu is located:

• Predict

When clicked shows a toast message with the prediction of the current
location

• Outdoor

When clicked writes all current readings from the sensors with a 0
class label to the CSV file /sdcard/dataset.csv and shows a toast
message ”Data dumped as OUTDOOR”

• Indoor

When clicked writes all current readings from the sensors with a 1
class label to the same file and shows a toast message ”Data dumped
as INDOOR”

6

Figure 2. Interface

7

3. Data acquisition

To make any predictions we had to collect data at first. We used Lenovo
A606. This phone has only three sensors: Accelerometer, Proximity and
Light so at first we decided to gather data from them. Obviously, that
was not enough and we required some aditional data. The vast majority
of android devices support GPS and every phone can measure reception
signal strength. So we added Signal Strength and some GPS data such as
GPS coordinates and GPS accuracy.

After a number of tests it was clear that GPS takes too much time
to make a fix. That is why we had to gather data from satellites directly
instead. Android API allows to receive signal-to-noise ratio for each visible
satellite which is useful for our task. Another advantage of that decision
was that we could measure signal-to-noise ratio even there were not enough
visible satelites to make a fix.

Finally we started collecting data both indoors and outdoors at night
and during a day. As described in User Interface section (Section 2.2)
collected data was dumped to a CSV file that was then processed on a
laptop using python.

8

4. Data processing

4.1. Preprocessing

We used scikit-learn, numpy, matplotlib and other Python libraries to
analyze the data. First we extracted data from the CSV file using Pandas
library. Before fitting any of the classifiers data has to be organized into
the form of features and classes.

It was obvious that accelerometer and proximity data are useless for our
task so we did not take them into account. The next step was to adapt the
satellites data. We decided to calculate the average signal-to-noise ratio
for each record and use it as a feature. That means that we had three
features for each object: Light, Signal strength and Signal-to-noise ratio:

Figure 3. Example of the preprocessed data

When the data was ready for fitting the classifier we had to choose which
classifier to use. If our data is linearly separable it is preferable to use a
linear model for classification that calculates the output score as

y = f(~w, ~x) = f

(∑
i

wixi

)

where ~x is a vector of features and ~w is a vector of weights.
To check if we can linearly separate our data we can build a scatter plot

where axes are features and dots are objects described by their features.
As long as we have only three features, it was easy to visualize a 3D scatter
plot (Figure 4). Blue dots represent outdoor class whereas red ones stay
for indoor class.

It proved our assumption that we can make a hyperplane that would
more or less divide our objects into two classes. However this plot revealed
another problem. It can be noticed that both red and blue dots are nearly
uniformly distributed along Signal Strength axis.

9

Figure 4. Training data on a 3D scatter plot

To be fully convinced we built a projection on 2D plane (Figure 5). That
means that Signal Strength does not carry any valuable information for our
classification.

Figure 5. Projection on a 2D plane

That is why finally left only two features for each object Light and
Satellites signal-to-noise ratio.

10

Figure 6. Resulting data on a 2D scatter plot

Finally, we had to choose between a plenty of existing linear classifiers.
To resolve this issue we decided to try three popular classifiers and take
the one that will show the best result on our tests. Next, we provide a
description for each classifier and the results.

4.2. Decision Tree

Decision tree classifier is a supervised learning method. It learns simple
decision rules from the data and uses them to predict target classes. One
of the main advantages of decision tree is that it is easy to use, understand,
interpret and visualize.

Decision tree is built in a following way. Input (or training) data is
organized in the form of records (~x, Y) where ~x is a vector of features and
Y is a class label. The tree learns by splitting the data into two parts by
choosing a best split in terms of a certain metric. This process is repeatead
on each of the two parts until all the parts have objects of the same class
only. There are many possible ways to measure the best split but we used
Gini impurity metric that represents how often would a randomly chosen
element from the training dataset be labeled incorrectly. For two class
classification it can be calculated as follows

IG =
n0
m
∗ (1− n0

m
) +

n1
m
∗ (1− n1

m
)

where ni is the number of items labeled i and m is the number of items
in the input dataset. On the node where all objects belong to one class it
reaches its minimum value(zero).

11

After that, trained decision tree classifier can be used to predict class of
a new object described by the same type of features.

We trained a decision tree on our data and made a decision graph (Figure
7). Resulting classifier is significantly overfitted because we have many
nodes with a small number of objects which means that this tree does not
generalize data well. To prove this we provide a corresponding scatter plot
with a decision boundary.

Figure 7. Overfit decision graph

12

Figure 8. Overfit decision tree

To avoid this we can limit the minimum number of objects in a leaf by
5. The resulting graph is presented on Figure 9. We also built a decision
boundary on scatter plot for better visualization of classification (Figure
10).

13

Figure 9. Pruned decision graph

14

Figure 10. Scatter plot with decision boundary

15

4.3. Support Vector Machine with linear kernel

Support Vector Classifier is a supervised learning method. In two class
case its goal is to build a division hyperplane in the feature space that will
maximize the gap between classes in order to minimize the generalization
error. Border hyperplanes of this gap can be written as

~w · ~x− b = 1

~w · ~x− b = −1

which means that each object (~xi, Yi) satisfies the following inequalities

~w · ~xi − b ≥ 1, if Yi = 1

~w · ~xi − b ≤ 1, if Yi = −1

which is the same as

Yi(~w · ~xi − b) ≥ 1 for all i

In order to be able to use SVM when the data is not linearly separable we
should include a new variable ε and rewrite the inequality:

Yi(~w · ~xi − b) ≥ 1− εi for all i

Which brings us to the optimization problem:

minimize
1

n

m∑
i=1

εi + λ‖w‖2

Where λ is a regularisation prameter. This problem can be solved by
transforming it into a dual problem which in turn brings us to the following
decision function:

f(x) = sgn

(
n∑

i=1

ci(xi, x) + b

)

Where sgn denotes the signum function, xi are the support vectors and ci
are the coefficients that are obtained as the solution of the dual problem.

We trained an SVM classifier with linear kernel on our data and used
exhaustive grid search to find the regularisation parameter λ that will show
the best cross-validation score. It was λ = 0.01. Again we built the decision
boundary on a scatter plot (Figure 11).

16

Figure 11. Scatter plot with decision boundary

4.4. Logistic regression

Logistic regression is a classifier that uses decision function that is close
to SVMs:

f(x) = sgn

(
n∑

i=1

wixi + b

)
The difference is in the way the weights wi are obtained:

~w = argmin

(
1

2
(~w, ~w) + C

m∑
i=1

ln(exp(−yi((~w, ~xi) + b)) + 1)

)

It allows to predict posterior probabilities for each class but we do not need
that for our task.

A scatter plot with a decision boundary for Logistic regression is provided
on Figure 12.

17

Figure 12. Scatter plot with decision boundary

4.5. Result

To decide which classifier is better, we decided to use cross-validation.
The result was:

• Decision Tree: 0.885

• Linear SVM: 0.926

• Logistic regression: 0.917

So SVM was chosen and the next step was to implement it on Android.

18

5. Implementing classifier

To implement the decision function, we had to obtain intercept (b in the
decision function), dual coefficients (ci) and support vectors (xi). Scikit-
learn allows to do that easily so implementation in java is presented below.

public f loat sc mul (double [] x1 ,
double [] x2){

int r e s u l t = 0 ;
for (int i = 0 ; i< x1 . l ength ; i ++){

r e s u l t += x1 [i]∗ x2 [i] ;
}
return r e s u l t ;

}

public boolean p r e d i c t (double [] X, // Input v e c t o r
double b , // In t e r c e p t
double [] w, // Dual c o e f f i c i e n t s
double [] [] sv){ // Support v e c t o r s

int n = sv . l ength ;
int s = 0 ;
for (int i = 0 ; i<n ; i ++){

s += w[i]∗ sc mul (sv [i] , X) ;
}
return s + b > 0 ;

}

19

6. Conclusion

We presented a fully functional Android application that allows to pre-
dict if the device is located inside or outside of the building and visualize
measurements of some mobile sensors. We studied three different classifiers
and discovered which one manages to show the best results.

Final product shows accurate predictions except some difficult cases like
when the phone is next to a window which makes both light and SnR very
high or, in contrast, at night and when there are some obstacles that reduce
SnR that confuse the classifier.

The further work on the created application may include gathering big-
ger amounts of train data and providing support for other sensors such
as temperature and magnetometer. Also more complex machine learning
methods may be used.

20

References

[1] Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Ele-
ments of Statistical Learning: Data Mining, Inference, and Prediction..
Springer, 2009.

[2] Android reference,
https://developer.android.com/reference/packages.html

[3] Scikit-learn reference,
http://scikit-learn.org/stable/documentation.html

21

