
CSSE2002 exam material
John Owen

1 Important bits from the Object class

boolean equals(Object obj)
Indicates whether some other object is "equal to" this one.

Usually, you override equals() i� your class is immutable and it hasn’t already been overridden by a
superclass.

Rules equals() must abide by:

• Re�exivity: x.equals(x).

• Symmetry: x.equals(y) == y.equals(x).

• Transitivity: x.equals(y) && y.equals(z) == x.equals(z).

• x.equals(null) is false.

If you override equals(), you must also override hashCode().

int hashCode()
Returns a hash code value for the object. This method is supported for the bene�t of hash tables such as
those provided by HashMap. The general contract of hashCode is:

• Whenever it is invoked on the same object more than once during an execution of a Java application,
the hashCode method must consistently return the same integer, provided no information used in
equals comparisons on the object is modi�ed. This integer need not remain consistent from one
execution of an application to another execution of the same application.

• If two objects are equal according to the equals(Object) method, then calling the hashCode method
on each of the two objects must produce the same integer result.

• It is not required that if two objects are unequal according to the equals(java.lang.Object) method,
then calling the hashCode method on each of the two objects must produce distinct integer results.
However, the programmer should be aware that producing distinct integer results for unequal objects
may improve the performance of hash tables.

String toString()
Returns a string representation of the object.

2 Good implementation of hashCode()

2.1 General case

First, for every �eld fi (f0 is the �rst �eld and so on), calculate its hash code hiusing

hi =



(fi ? 1 : 0) if fi is a boolean

(int) fi if fi is a byte, char, short, long, or int
Float.floatToIntBits(fi) if fi is a float or double
fi == null ? 0 : fi.hashCode() if fi is a Object

Arrays.hashCode(fi) if fi is an array.

To calculate the hash code, we use hashCode =
∑

i hi31
i.

1



2.2 Example implementation

public class Employee {
int employeeId;
String name;
Department dept;

// ...

public int hashCode() {
return employeeId + name.hashCode() * 31 + dept.hashCode() * 31 ^ 2;

}
}

3 Important bits from the List<E> interface

boolean add(E e)
Appends the speci�ed element to the end of this list (optional operation).

void add(int index, E element)
Inserts the speci�ed element at the speci�ed position in this list (optional operation).

boolean addAll(Collection<? extends E> c)
Appends all of the elements in the speci�ed collection to the end of this list, in the order that they are
returned by the speci�ed collection’s iterator (optional operation).

boolean addAll(int index, Collection<? extends E> c)
Inserts all of the elements in the speci�ed collection into this list at the speci�ed position (optional oper-
ation).

void clear()
Removes all of the elements from this list (optional operation).

boolean contains(Object o)
Returns true if this list contains the speci�ed element.

boolean containsAll(Collection<?> c)
Returns true if this list contains all of the elements of the speci�ed collection.

boolean equals(Object o)
Compares the speci�ed object with this list for equality.

E get(int index)
Returns the element at the speci�ed position in this list.

int hashCode()
Returns the hash code value for this list.

int indexOf(Object o)
Returns the index of the �rst occurrence of the speci�ed element in this list, or -1 if this list does not
contain the element.

boolean isEmpty()
Returns true if this list contains no elements.

Iterator<E> iterator()
Returns an iterator over the elements in this list in proper sequence.

int lastIndexOf(Object o)
Returns the index of the last occurrence of the speci�ed element in this list, or -1 if this list does not contain
the element.

2



ListIterator<E> listIterator()
Returns a list iterator over the elements in this list (in proper sequence).

ListIterator<E> listIterator(int index)
Returns a list iterator over the elements in this list (in proper sequence), starting at the speci�ed position
in the list.

E remove(int index)
Removes the element at the speci�ed position in this list (optional operation).

boolean remove(Object o)
Removes the �rst occurrence of the speci�ed element from this list, if it is present (optional operation).

boolean removeAll(Collection<?> c)
Removes from this list all of its elements that are contained in the speci�ed collection (optional operation).

void replaceAll(UnaryOperator<E> operator)
Replaces each element of this list with the result of applying the operator to that element.

boolean retainAll(Collection<?> c)
Retains only the elements in this list that are contained in the speci�ed collection (optional operation).

E set(int index, E element)
Replaces the element at the speci�ed position in this list with the speci�ed element (optional operation).

int size()
Returns the number of elements in this list.

void sort(Comparator<? super E> c)
Sorts this list according to the order induced by the speci�ed Comparator.

List<E> subList(int fromIndex, int toIndex)
Returns a view of the portion of this list between the speci�ed fromIndex, inclusive, and toIndex, exclusive.

Object[] toArray()
Returns an array containing all of the elements in this list in proper sequence (from �rst to last element).

4 Important bits from the java.util.Map<K,V> interface

void clear()
Removes all of the mappings from this map (optional operation). Removes all of the mappings from this
map (optional operation).

boolean containsKey(Object key)
Returns true if this map contains a mapping for the speci�ed key. Returns true if this map contains a
mapping for the speci�ed key.

boolean containsValue(Object value)
Returns true if this map maps one or more keys to the speci�ed value. Returns true if this map maps one
or more keys to the speci�ed value.

Set<Map.Entry<K,V>> entrySet()
Returns a Set view of the mappings contained in this map. Returns a Set view of the mappings contained
in this map.

boolean equals(Object o)
Compares the speci�ed object with this map for equality. Compares the speci�ed object with this map for
equality.

V get(Object key)
Returns the value to which the speci�ed key is mapped, or null if this map contains no mapping for the
key. Returns the value to which the speci�ed key is mapped, or null if this map contains no mapping for
the key.

3



int hashCode()
Returns the hash code value for this map. Returns the hash code value for this map.

boolean isEmpty()
Returns true if this map contains no key-value mappings. Returns true if this map contains no key-value
mappings.

Set<K> keySet()
Returns a Set view of the keys contained in this map. Returns a Set view of the keys contained in this map.

V put(K key, V value)
Associates the speci�ed value with the speci�ed key in this map (optional operation). Associates the
speci�ed value with the speci�ed key in this map (optional operation).

void putAll(Map<? extends K,? extends V> m)
Copies all of the mappings from the speci�ed map to this map (optional operation). Copies all of the
mappings from the speci�ed map to this map (optional operation).

V remove(Object key)
Removes the mapping for a key from this map if it is present (optional operation). Removes the mapping
for a key from this map if it is present (optional operation).

boolean remove(Object key, Object value)
Removes the entry for the speci�ed key only if it is currently mapped to the speci�ed value. Removes the
entry for the speci�ed key only if it is currently mapped to the speci�ed value.

V replace(K key, V value)
Replaces the entry for the speci�ed key only if it is currently mapped to some value. Replaces the entry
for the speci�ed key only if it is currently mapped to some value.

boolean replace(K key, V oldValue, V newValue)
Replaces the entry for the speci�ed key only if currently mapped to the speci�ed value. Replaces the entry
for the speci�ed key only if currently mapped to the speci�ed value.

int size()
Returns the number of key-value mappings in this map. Returns the number of key-value mappings in
this map.

Collection<V> values()
Returns a Collection view of the values contained in this map. Returns a Collection view of the values
contained in this map.

5 Important bits from the Comparable<T> interface

int compareTo(T o)
Compares this object with the speci�ed object for order. Returns a negative integer, zero, or a positive in-
teger as this object is less than, equal to, or greater than the speci�ed object. The implementor must ensure
sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for all x and y. (This implies that x.compareTo(y)
must throw an exception i� y.compareTo(x) throws an exception.)

The implementor must also ensure that the relation is transitive: (x.compareTo(y)>0 && y.compareTo(z)>0)
implies x.compareTo(z)>0.

Finally, the implementor must ensure that x.compareTo(y)==0 implies that sgn(x.compareTo(z)) ==
sgn(y.compareTo(z)), for all z.

It is strongly recommended, but not strictly required that (x.compareTo(y)==0) == (x.equals(y)).
Generally speaking, any class that implements the Comparable interface and violates this condition should
clearly indicate this fact. The recommended language is "Note: this class has a natural ordering that is
inconsistent with equals."

In the foregoing description, the notation sgn(expression) designates the mathematical signum func-
tion, which is de�ned to return one of −1, 0, or 1 according to whether the value of expression is negative,
zero or positive.

4



6 Important unchecked exceptions in java.lang

ArithmeticException: Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException: Array index is out-of-bounds.

ArrayStoreException: Assignment to an array element of an incompatible type.

ClassCastException: Attempt to cast an object of type A to something that isn’t a superclass of A.

IllegalArgumentException: Illegal argument used to invoke a method.

IllegalStateException: Environment or application is in incorrect state.

IndexOutOfBoundsException: Some type of index is out-of-bounds.

NullPointerException: Invalid use of a null reference.

NumberFormatException: Invalid conversion of a string to a numeric format.

StringIndexOutOfBounds: Attempt to index outside the bounds of a string.

UnsupportedOperationException: An unsupported operation was encountered.

RuntimeException: Is the superclass of those exceptions that can be thrown during the normal operation of
the Java Virtual Machine.

5


