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Project Description

We would like to focus on a popular macroeconomics problem called Utility Max-
imization, where the goal is to maximize the happiness of a consumer. The utility
function will be denoted by U(c, l), which relates the consumption and the leisure
of an individual in society with his/her happiness. A simple utility function is log-
sum of consumption and leisure. Often, a discount factor β (a modeling constant)
is applied exponentially. Discount factor is used to model gradually decreased
effects of future wealth on today [1].

The function takes two arguments: c ∈ Rn = (c1, c2, ..., cn) and l ∈ Rn =

(l1, l2, ..., ln) which denote the normalized (ct, lt ∈ [0, 1]) consumption and labor.
The price for the single consumption good is denoted as P = (P1, P2, ..., Pn). The
consumer, at time step t, needs to prepare mt = Ptct amount of money for the next
time step, t + 1, which is called the cash-in-advance constraint. There is the bonds
mechanism, on time step t, when a consumer buys bonds worth st, at next time
step he/she receives (1 + R)st with R being the interest rate. The same applies
while borrowing. The consumption and work hours spent (labor) is related with
a production function, which is in general a concave function such as ln(lt) or lα

t
with 0 ≤ α ≤ 1 being a constant. To keep things simple, we have assumed R is not
fluctuating.

To simplify the problem, there is a bold assumption of "representative house-
hold" and we can employ that. This basically means that rather than modeling and
optimizing for a single household, it is possible to optimize for a "representative"
which is an arithmetic mean of the entire population. This approach introduces
two more constraints, known as market-clearing constraints: st = 0 since on aver-
age, no-one can borrow without a lender and ct = f (lt) since on average, a good
which is not produced cannot be consumed.

The formal (mathematical) statement of our problem is:

maximize
{ct,lt,st+1,mt+1}

U(c, l) =
N−
∑
t=0

βt[ln(ct) + ln(1− lt)]

subject to Ptct = mt

mt+1 + st+1 = mt + (1 + Rt)st + Ptlt + τt − Ptct

ct = lt to see effects of production function to optimization problem

st = 0

The formal version of problem is generally not solved numerically, instead it is
solved algebraically and then expressions for terms are found and comments are
made on them. However, in this project, after those steps, we would like to carry
the problem to the numeric "domain" and visually see how environment parame-
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ters affect consumer decisions. In order to be able to solve with MATLAB, we need
to add 2 more constraints, to bound c and l (normalize them). These constraints
are:

0 � c � 1 and 0 � l � 1

These will not be derived in duality & kkt sections however their effects will be
expressed within simulation section.

Discussion of Convexity

We discuss the convexity of the objective function by observing that U(c, l) is a
weighted sum of functions depending on ct, lt.

=⇒ U(c, l) =
N−1

∑
t=0

βt[ f (ct, lt)]

Let us consider βt, ct, f (ct, lt) and lt as vectors of length N.→ β, c, f (c, l), l.

=⇒ U(c, l) = βT[ f (c, l)]

We see that U(c, l) is an affine function of f (c, l), and that β � 0. Therefore, for
the optimization problem to be convex, we need to analyze the concavity of f (c, l).
In this case, because of the affine combination property, it is sufficient to check if
f (ct, lt) is concave. We look at the Hessian of f (ct, lt).

∂ f
∂ct

=
1
ct

=⇒ ∂2 f
∂c2

t
= − 1

c2
t

∂ f
∂lt

= − 1
1− lt

=⇒ ∂2 f
∂l2

t
= − 1

(1− lt)2

∂2 f
∂ct∂lt

= 0 52 f (ct, lt) =

[
− 1

c2
t

0

0 − 1
(1−lt)2

]
� 0

The Hessian is a negative matrix, and therefore f (ct, lt) is concave. Since each
added term in the sum is concave, we conclude that the objective is a concave func-
tion.

For the constraints, we analyze the market-clearing conditions introduced in the
previous section.

st+1 = st = 0 ct = lt Ptct = mt =⇒ mt+1 = mt + τt = mt + gmt = mt(1 + g)

All constraints are linear and thus convex; therefore we can solve the problem
using convex optimization techniques.
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Formulation of the Dual Problem - Part 1

We write the Lagrangian with the dual variables βtµt, βtλt, βtyt and βtzt:

L(ct, lt, st+1, mt+1, µt, λt, yt, zt) =
N−1

∑
t=0

βt[ln(ct) + ln(1− lt) + µt(mt − Ptct)]

+
N−2

∑
t=0

βtλt(mt + (1 + Rt)st + Ptlt + τt − Ptct −mt+1 − st+1)

+
N−1

∑
t=0

βt(yt(ct − lt) + zt(st))

In order to find the dual, we note that as two constraints, we will need yt = 0 and
zt = 0 otherwise the supremum would tend to infinity. Therefore,

g(λt, µt) = sup
ct,lt,st+1,mt+1

L

we set the gradient of the Lagrangian to zero since the Lagrangian is concave. This
brings us to the KKT conditions, but we will return to this discussion.

KKT Conditions

In order to obtain the KKT conditions, we set the gradient of the Lagrangian to
zero. 5L = 0. We do not have any inequality constraints, so we will not look at
complementary slackness. Instead of using the dual variable yt for the constraint
ct = lt, we will simplify the problem by replacing lt with ct.

dL
dct

= 0 =⇒ βt 1
ct
− βt(µt + λt)Pt = 0 =⇒ 1

ct
= (µt + λt)Pt (1)

dL
dlt

= 0 =⇒ −βt 1
1− lt

+ βtλtPt = 0 =⇒ λt =
1

(1− lt)Pt
(2)

dL
dst+1

= 0 =⇒ −βtλt + βt+1λt+1(1 + Rt+1) = 0 =⇒ λt = βλt+1(1 + Rt+1) (3)

dL
dmt+1

= 0 =⇒ −βtλt + βt+1(µt+1 + λt+1) = 0 =⇒ β(µt+1 + λt+1) = λt (4)

Using equation (1) and equation (4), we get an expression for λ and we plug this
in equation (2). We also use the constraint ct = lt.

λt =
β

ct+1Pt+1
=

1
(1− ct)Pt

=⇒ Pt+1

Pt
= β

1− ct

ct + 1
(5)
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We also use equation (2) in equation (3).

1
(1− ct)Pt

=
β(1 + Rt+1)

(1− ct+1)Pt+1
=⇒ Pt+1

Pt
=

1− ct

1− ct+1
β(1 + Rt+1) (6)

Finally, we have Ptct = mt.

Pt+1

Pt
=

(1 + τt/mt)ct+1

ct
=

1− ct

1− ct+1
β(1 + Rt+1) = β

1− ct

ct+1
(7)

Using the equalities in (7), we find that

ct+1 =
1

2 + Rt+1
(8)

and all three equalities in (7) are satisfied if ct+1 = ct =⇒ ct = c∗ is a constant;
consequently, Rt = R and lt = l∗ are constants as well, and

1 +
τt

mt
= β(1 + Rt) =⇒ τt

mt
= g→ constant (9)

For optimal conditions, we set lt = ct = c∗ in ∑N−1
t=0 βt[ln(ct) + ln(1− lt)] and set

its derivative to zero, since the objective is reduced to one variable.

d
dc∗

1− βN

1− β
[ln(c∗) + ln(1− c∗)] = 0 =⇒ 1

c∗
− 1

1− c∗
= 0 =⇒ c∗ = 1/2 (10)

Since c∗ = 1
2+R =⇒ R = 0 and g = β − 1. The optimal values are m∗t+1 =

βmt =⇒ mt+1 = β(t + 1)m0, st+1 = 0, ct = lt = 1/2 for the system in equilibrium
for N days.

Formulation of the Dual Problem - Part 2

We have

lt = 1− 1
λtPt

ct =
1

(µt + λt)Pt
st+1 = 0 mt+1 = mt(1 + τt/mt) =

1 + g
(µt + λt)

λt = βλt+1(1 + Rt+1) β(µt+1 + λt+1) = λt

g(λt, µt) =
N−1

∑
t=0

βt[ln(
1

(µt + λt)Pt
) + ln(

1
λtPt

) + µt(mt −
1

(µt + λt)
)]

+
N−2

∑
t=0

βtλt(mt + (1 + Rt)st + Pt(1−
1
λt

) + τt −
1

(µt + λt)
− 1 + g

(µt + λt)
)
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The dual problem then becomes

minimize g(λt, µt)

subject to st = 0

1− 1
λtPt

=
1

(µt + λt)Pt

λt = βλt+1(1 + Rt+1)

β(µt+1 + λt+1) = λt

Simulation Results and Discussion

Let us first try only with cash-in-advance, money flow and normalizing (c and l
being between 0 and 1) constraints. In this case, we are just trying to maximize for
a single person. Let us also assume that the individual begins with a fair amount
of money (0.5 units) so that he does not starve in the first time step.

The result: c = [1,1,...,1] and l = [0,0,...,0] regardless of the interest rate, prices,
discount factor and any other variable. It is a bit weird that the consumer is able to
consume a lot without actually working. What we notice is that amount of bond
bought is [3.5,3,...] yet the debts are not paid. So a Ponzi scheme is created. The
consumer borrows more and more each round. Even though not being an eco-
nomically valid result, let us analyze in terms of convex optimization terminology.
Currently, the only active constraints are normalizing constraints (i.e. 0 ≤ c ≤ 1).
So the Lagrange multipliers for those are strictly positive and the rest are zero.

Now let us try adding ponzi scheme preventing constraint in the last time step,
s (amount of bonds) should be zero since the consumer will not be existent in next
time step.

sN−1 = 0
In this case, R, β and other modeling parameters begin to matter. Let us include

a 3D graph of c(t) versus β.
As it can be seen (on graphs following this page), for low β, the solution found

is to maximize initial consumption and to minimize initial labor. The mechanism
which allows this behavior is interest rate (R). As beta rises, we see that consump-
tion begins to spread more evenly.

Now let us analyze the dual variables and the values they attain. From those
variables, we can comment on duality of the problem and also on the which con-
straints are active.
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Figure 1: Optimal consumption strategy for various β and m(1) = 0.5, R=0, no market clearing,
Ponzi not allowed

Figure 2: Optimal labor strategy for various β and m(1) = 0.5, R=0, no market clearing, Ponzi not
allowed
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Figure 3: Optimal consumption strategy for various β and m(1) = 0.5, R=0.8, no market clearing,
Ponzi not allowed

Figure 4: Optimal labor strategy for various β and m(1) = 0.5, R=0.8, no market clearing, Ponzi not
allowed
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Figure 5: Dual variable λ for varying β and m(1) = 0.5, R=0.8, no market clearing, Ponzi not allowed

Figure 6: Dual variable σ for various β and m(1) = 0.5, R=0, no market clearing, Ponzi not allowed
(errata: X axis is β and not time!)
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Figure 7: Dual variable ρ for various β and m(1) = 0.5, R=0.8, no market clearing, Ponzi not allowed

Figure 8: Dual variable ε for various β and m(1) = 0.5, R=0.8, no market clearing, Ponzi not allowed
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Again for the same R (=0.8) and same initial income (m=0.5) let us now plot
the duality variables and afterwards let us comment on them.

Important results can be obtained from these graphs of dual variables. Let us
first denote which dual variable corresponds to which constraint and at the same
time discuss the graphs obtained:

• ε : 0 ≤ c ≤ 1

for different βs, this variable is always 0. This means that for high interest
rates, we are always inside this boundary and never at the boundary. Only for
very low beta values, we begin to come at 0 ≤ c boundary, since with bonds
the consumer chooses to spend early and work afterwards to compensate.
This dual variable symbolizes how "unworthy" is a consumption good.

• ρ : 0 ≤ l ≤ 1

for different βs, this variable is very high at initial times then gets low. This
means that the incentive is to work less when it matters for the utility, af-
terwards it becomes zero. This dual variable symbolizes how "worthy" is
leisure, (i.e. a shadow price)

• λ : m(t + 1) + s(t + 1) = m(t) + (1 + R)s(t) + p(k)c(k) + tau(k)− p(k)c(k)

this variable decreases with time and increases with beta. It is not wrong to
consider this one as an incentive to "print money". The reason is, lambda is
the dual variable weighing the constraint of "earned money is equal to spent
money". As this dual variable gets away from zero, we see that the consumer
is in demand of more money but is not able to get since he did not work hard
enough.

• σ : s(N − 1) = 0

this variable increases with beta. This constraint was on "to leave debt for the
offsprings". It makes sense since as the beta increases, the consumption at
later life stages begins to be important for the individual, hence the incentive
to "keep the spending trend as is." So σ is the incentive of "leaving debt to
offsprings".
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CVX MATLAB Code

Below is given the CVX code for this problem.
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