Comprehensive and Self-Contained Number Theory

Shin-Eui Song

Part I

Preliminaries

Chapter 1

Construction of Numbers

1.1 Peano Axioms

Peano axioms are a set of axioms for the natural numbers presented by 19th century Italian mathematician Giuseppe Peano.

1. $0 \in \mathbb{N}$
2. = defines an equivalence relation.
3. For all $a, b, a=b$ with $b \in \mathbb{N}$ implies that $a \in \mathbb{N}$, i.e. \mathbb{N} is closed under equality.
4. There exists a sucessor function $S: \mathbb{N} \rightarrow \mathbb{N}$

Peano's original formulation of the axioms used 1 instead of 0 as the "first" natural number. However, since 1 does not endow the constant 0 with any additional properties, this choice is arbitrary.
5. S is injective, i.e. $S(n)=S(m)$ implies $n=m$ for any natural numbers $n, m \in \mathbb{N}$.
6. $S^{-1}(0)=\varnothing$, i.e. there is no natural number whose successor is 0 .

The above axioms require $\{0, S(0), S(S(0)), \ldots\} \subset \mathbb{N}$ with $0, S(0), S(S(0)), \ldots$ distinct elements. However, we need to show the reversed set inclusion, i.e. $\mathbb{N} \subset\{0, S(0), S(S(0)), \ldots\}$. We define $1=S(0), 2=S(S(0)$), and so on. Hence we add an additional axiom which is called the axiom of induction
7. If K is a set such that
(a) $0 \in K$,
(b) For every $n \in \mathbb{N}$, if $n \in K$, then $S(n) \in K$, then K contains every natural number.

The axiom of induction can be written in the following form:
8. If φ is a unary predicate such that
(a) $\varphi(0)$ is true,
(b) For every $n \in \mathbb{N}$, if $\varphi(n)$ is true, then $\varphi(S(n))$ is true, then $\varphi(n)$ is true for every natural number.

Peano axioms can be augmented with the operations of addition and multiplication and the usual total ordering on \mathbb{N}. The respective functions and relations are constructed in "second-order logic", and are shown to be unique using the Peano Axiom.

Addition

Addition is a function $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, and is defined recursively as:

$$
\begin{gathered}
a+0=a \\
a+S(b)=S(a+b)
\end{gathered}
$$

where we use the notation $+(a, b)=a+b$ for convenience. The structure $(N,+)$ is a commutative semigroup with identity element 0 , or simply a commutative monoid. It is also a cancellative magma, and thus embeddable in a group, and the smallest group embedding \mathbb{N} is \mathbb{Z} which is the integers.

Multiplication

Let $\times: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ with the notation $\times(a, b)=a \times b$ which is also defined recursively as

$$
\begin{gathered}
a \times 0=a, \\
a \times S(b)=a+(a \times b)
\end{gathered}
$$

then we can easily verify that 1 is an multiplicative identity because

$$
a \times 1=a \times S(0)=a+(a \times 0)=a+0=a
$$

Moreover, multiplication distributes over addition:

$$
a \times(b+c)=(a \times b)+(a \times c)
$$

Thus $(N,+, \times)$ is a commutative semiring.

Inequalities

The usual total order relation \leq on natural numbers can be defines as follows.
For all, $a, b \in \mathbb{N}, a \leq b$ if and only if there exists some $c \in \mathbb{N}$ such that $a+c=b$
This relation is stable under addition and multiplication, that is for every $a, b, c \in \mathbb{N}$, if $a \leq b$, then

1. $a+c \leq b+c$, and
2. $a \times c \leq b \times c$,

Thus, the structure $(N,+, \times)$ is an ordered semiring, and because there is no natural number between 0 and 1 , there is no natural number between $n, n+1$, hence becomes a discrete ordered semiring. Then we state the axiom of induction in its strong form: For any predicate φ

1. $\varphi(0)$ is true,
2. For every $n, k \in \mathbb{N}$ and $k \leq n$, if $\varphi(k)$ is true, then $\varphi(S(n))$ is true. Then $\varphi(n)$ is true for all natural numbers n.

This form of the induction axiom is a simple consequence of the standard formulation, but it is often more suited for reasoning about the order. Now we show that the naturals are well-ordered: every nonempty subset of \mathbb{N} has a least element. Let $X \subset \mathbb{N}$, a nonempty subset with X no least element.

1. 0 is a least element of \mathbb{N}, hence $0 \notin X$.
2. If for every $k \leq n, k \notin X$ implies that $S(k) \notin X$, as if it were, then it would be the least element of X.

Hence by the strong induction principle, for all $n \in \mathbb{N}, n \notin X$, which means that $X \cap \mathbb{N}=$ \varnothing, which contradicts the fact that X is nonempty.

The following demonstrates the set-theoretic model of the natural numbers. The Peano axioms can be derived from set theoretic constructions of the natural numbers and axioms of set theory such as the $Z F$. Let $0:=\varnothing$, with $S(a)=a \cup\{a\}$. Then the natural number is defined to be the intersection of all sets closed under s that contains the empty set. Each natural number is equal (as a set) to the set of natural numbers less than it:

1. $0=\varnothing$,
2. $1=s(0)=\varnothing \cup\{\varnothing\}$,
3. $2=s(1)=s(\{\varnothing\})=\{\varnothing\} \cup\{\{\varnothing\}\}=\{\varnothing,\{\varnothing\}\}=\{0,1\}$
and so on. Then \mathbb{N} with 0 and the successor function s satisfies the Peano axioms. "Peano arithmetic" is equiconsistent with several weak systems of set theory. One such system is ZFC with the axiom of infinity replaced by its negation. We see that by Godel that a consistency proof cannot be formalized within Peano arithmetic itself. This rules out the finitistic consistency proof. However, Gentzen gave a consistency proof using transfinite induction which is arguably finitistic as transfinite ordinal can be encoded in terms of finite objects. The problem comes from not giving a precise definition of what it means to be finitistic, but both Hilbert and Gentzen could not come up with a generally accepted definition.

Citation: https://en.wikipedia.org/wiki/Peano_axioms, 2015-12-20, the page was last modified on 8 November 2015, at 23:39.

Chapter 2

Number Fields

2.1 Integral Extensions

We would like to show that for finitely generated \mathcal{O}_{K}-module $\mathfrak{A} \subset \mathfrak{A}^{\prime}$ satisfies the following

$$
d\left(v_{1}, \ldots, v_{n}\right)=\left[\mathfrak{A}^{\prime}: \mathfrak{A}\right] d\left(w_{1}, \ldots, w_{n}\right)
$$

then it suffices to show that the determinant of a change of basis matrix T that sends the \mathbb{Z}-basis of \mathfrak{A}^{\prime} to the \mathbb{Z}-basis of \mathfrak{A} is equal to the index of $\left[\mathfrak{A}^{\prime}: \mathfrak{A}\right]$. This follows from the well-known results from module theory, namely

1. $B_{i} \subset A_{i}$ be submodules, then $\oplus B_{i} \subset \oplus A_{i}$ is a submodule and we have the moduleisomorphism

$$
\left(\bigoplus B_{i}\right) /\left(\bigoplus A_{i}\right)=\bigoplus\left(B_{i} / A_{i}\right)
$$

2. Let $A x$ be a free principal module over a principal ideal domain A. If $N \subset A x_{i}$, then because we have unique representation, we may talk about the subset of A which comprises of all the "coefficients" of N which forms an ideal, and denote it \mathfrak{A}. Then because A is a principal ideal domain, $\mathfrak{A}=(d)$ for some $d \in A$. Hence $N=A(d x)$.
3. Let $M=M_{1} \oplus \cdots \oplus M_{n}$ be a free A-module, then a submodule N of M is of the form $N_{1} \oplus \cdots \oplus N_{n}$ where N_{i} are A-submodule of M_{i}. If M is a free A-module of the form $A x_{1} \oplus \cdots \oplus A x_{n}$, then by the above remark, we get that the submodule is of the form $A d_{1} x_{1} \oplus \cdots \oplus A d_{n} x_{n}$ for some $d_{i} \in A$.

By 3 above, we get that $\mathfrak{A}^{\prime}=\mathbb{Z} x_{1} \oplus \cdots \oplus \mathbb{Z} x_{n}$, then $\mathfrak{A}=\mathbb{Z} d_{1} x_{1} \oplus \cdots \oplus \mathbb{Z} d_{n} x_{n}$, then by 1 , we get that

$$
\mathfrak{A}^{\prime} / \mathfrak{A}=\bigoplus\left(\mathbb{Z} x_{i}\right) /\left(\mathbb{Z} d_{i} x_{i}\right)=\bigoplus \mathbb{Z} / \mathbb{Z} d_{i} x_{i}
$$

then

$$
\left|\mathfrak{A}^{\prime} / \mathfrak{A}\right|=\prod d_{i}
$$

This is exactly the determinant of the change of matrix that sends $x_{i} \mapsto d_{i} x_{i}$, where the matrix representation of the transformation is the diagonal matrix with its entries d_{1}, \ldots, d_{n}.

2.2 Quadratic Extensions

We are interested in $K=\mathbb{Q}(\sqrt{D})$ where d is square-free. We want to determined the ring of integers \mathcal{O}_{K}. First we observe that K / \mathbb{Q} has degree 2 , so the extension is normal. Because \mathbb{Q} has characteristic 0 , the extension is separable, hence Galois. The reader can easily check that $K \rightarrow K$ defined by $\sqrt{D} \mapsto-\sqrt{D}$, which can be viewed as an isomorphism between the splitting fields of $x^{2}-D$ over \mathbb{Q} is indeed an automorphism of K fixing \mathbb{Q}.

We know that all elements in $\mathbb{Z}[\sqrt{D}]$ is integral because $(x-(a+b \sqrt{D}))(x-(a-$ $b \sqrt{D}))=x^{2}-2 a x+\left(a^{2}-b^{2} D\right)$ gives an monic irreducible with coefficient in \mathbb{Z}. Now we assume that $\alpha \in \mathbb{Q}(\sqrt{D}) \backslash \mathbb{Z}[\sqrt{D}]$, i.e.

$$
\alpha=\frac{a}{b}+\frac{c}{d} \sqrt{D}
$$

then consider the minimal polynomial f of α over \mathbb{Q}, then if we let ${ }^{-}$be the map $\sqrt{D} \mapsto$ $-\sqrt{D}, f(\alpha)=0 \Rightarrow \bar{f}(\bar{\alpha})=f(\bar{\alpha})=0$. \mathbb{Z} being integrally closed implies that $f \in \mathbb{Z}[x]$. In fact, as $\alpha, \bar{\alpha}$ integral implies that f has coefficients in $\mathbb{Q} \cap \mathcal{O}_{K}=\mathbb{Z}$. This implies that

$$
\frac{2 a}{b}, \frac{a^{2}}{b^{2}}-\frac{D c^{2}}{d^{2}} \in \mathbb{Z}
$$

with assuming that a, b are relatively prime and c, d are relatively prime. If $b=1$, then we get $\left(D c^{2}\right) / d^{2} \in \mathbb{Z}$ which is impossible unless $d^{2} \mid D$, but we have that D is squarefree. Hence $b \geq 2$. Let p be a odd prime dividing b, then $p|2 a \Rightarrow p| a$, which contradicts $(a, b)=1$. Hence b is a power of 2 . If $b=2^{n}$ with $n \geq 2$, then $2^{n}\left|2 a \Rightarrow 2^{n-1}\right| a$ which again contradicts $(a, b)=1$. We may conclude that $b=2$.

Now we focus when

$$
\frac{a^{2}}{4}-\frac{D c^{2}}{d^{2}}=\frac{a^{2} d^{2}-4 D c^{2}}{4 d^{2}} \in \mathbb{Z}
$$

Then we have that the numerator is divisible by 4 . Modding out by 4 , we get $a^{2} d^{2}$ is even. Because b is even, then a has to be odd. i.e. d is even. We then have $d=2 k$ for some k, and the above transforms to

$$
\frac{4 a^{2} k^{2}-4 D c^{2}}{16 k^{2}}=\frac{a^{2} k^{2}-D c^{2}}{4 k^{2}} \in \mathbb{Z}
$$

Suppose a prime p divides k, then we have that $p\left|a^{2} k^{2}-D c^{2} \Rightarrow p\right| D c^{2}$. Because $(c, d)=1$, we have that p divides D, and because D is squarefree, p does not divide (D / p). Then we get

$$
\frac{a^{2} k^{2}-D c^{2}}{4 k^{2}}=\frac{a^{2}(p l)^{2}-D c^{2}}{4(p l)^{2}}=\frac{a^{2} p l^{2}-(D / p) c^{2}}{4 p l^{2}} \in \mathbb{Z}
$$

then $p\left|4 p l^{2}\right| a^{2} p l^{2}-(D / p) c^{2} \Rightarrow p\left|(D / p) c^{2} \Rightarrow p\right|(D / p)$ which leads to a contradiction. Hence $k=1$. We finally have the form

$$
\frac{a^{2}-D c^{2}}{4} \in \mathbb{Z}
$$

with a, c odd. Let's mod the numerator by 4 , then we get $1-D \equiv 0$, hence there exists a element $\alpha \in \mathbb{Q}(\sqrt{D}) \backslash \mathbb{Z}[\sqrt{D}]$ only if $D \equiv 1 \bmod 4$. Clearly, all $\frac{1}{2}(a+b \sqrt{D})$ is generated by $\frac{1}{2}(1+\sqrt{D})$ and 1 which are both integral, hence integral itself. To conclude we have the following,

1. $D \equiv 2,3 \bmod 4$, then $\mathcal{O}_{K}=\mathbb{Z}+\mathbb{Z}[\sqrt{D}]$
2. $D \equiv 1 \bmod 4$, then $\mathcal{O}_{K}=\mathbb{Z}+\mathbb{Z}\left[\frac{1}{2}(1+\sqrt{D})\right]$ which is strictly larger than $\mathbb{Z}+\mathbb{Z}[\sqrt{D}]$. This gives an example of when K / \mathbb{Q} a number field, then by the primitive element theorem $K=\mathbb{Q}(\theta)$, then the ring of integers is not always $\mathbb{Z}[\theta]$.

Then for the first case, we have the determinant

$$
\left(\operatorname{det}\left(\begin{array}{cc}
1 & \sqrt{D} \\
1 & -\sqrt{D}
\end{array}\right)\right)^{2}=(-2 \sqrt{D})^{2}=4 D
$$

and for the second case,

$$
\left(\operatorname{det}\left(\begin{array}{ll}
1 & \frac{1}{2}(1+\sqrt{D}) \\
1 & \frac{1}{2}(1-\sqrt{D})
\end{array}\right)\right)^{2}=(-\sqrt{D})^{2}=D
$$

