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Chapter 1

Construction of Numbers

1.1 Peano Axioms

Peano axioms are a set of axioms for the natural numbers presented by 19th century
Italian mathematician Giuseppe Peano.

1. 0 ∈ N

2. = defines an equivalence relation.

3. For all a, b, a = b with b ∈ N implies that a ∈ N, i.e. N is closed under equality.

4. There exists a sucessor function S : N→ N

Peano’s original formulation of the axioms used 1 instead of 0 as the “first” natural
number. However, since 1 does not endow the constant 0 with any additional properties,
this choice is arbitrary.

5. S is injective, i.e. S(n) = S(m) implies n = m for any natural numbers n,m ∈ N.

6. S−1(0) = ∅, i.e. there is no natural number whose successor is 0.

The above axioms require {0, S(0), S(S(0)), . . .} ⊂ N with 0, S(0), S(S(0)), . . . distinct el-
ements. However, we need to show the reversed set inclusion, i.e. N ⊂ {0, S(0), S(S(0)), . . .}.
We define 1 = S(0), 2 = S(S(0)), and so on. Hence we add an additional axiom which is
called the axiom of induction

7. If K is a set such that

(a) 0 ∈ K,

(b) For every n ∈ N, if n ∈ K, then S(n) ∈ K, then K contains every natural
number.

The axiom of induction can be written in the following form:

8. If ϕ is a unary predicate such that

(a) ϕ(0) is true,

(b) For every n ∈ N, if ϕ(n) is true, then ϕ(S(n)) is true, then ϕ(n) is true for
every natural number.
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Peano axioms can be augmented with the operations of addition and multiplication and
the usual total ordering on N. The respective functions and relations are constructed in
“second-order logic”, and are shown to be unique using the Peano Axiom.

Addition
Addition is a function + : N× N→ N, and is defined recursively as:

a+ 0 = a,
a+ S(b) = S(a+ b)

where we use the notation +(a, b) = a + b for convenience. The structure (N,+) is a
commutative semigroup with identity element 0, or simply a commutative monoid. It
is also a cancellative magma, and thus embeddable in a group, and the smallest group
embedding N is Z which is the integers.

Multiplication
Let × : N×N→ N with the notation ×(a, b) = a× b which is also defined recursively

as

a× 0 = a,
a× S(b) = a+ (a× b)

then we can easily verify that 1 is an multiplicative identity because

a× 1 = a× S(0) = a+ (a× 0) = a+ 0 = a

Moreover, multiplication distributes over addition:

a× (b+ c) = (a× b) + (a× c)

Thus (N,+,×) is a commutative semiring.

Inequalities
The usual total order relation ≤ on natural numbers can be defines as follows.

For all, a, b ∈ N, a ≤ b if and only if there exists some c ∈ N such that a+ c = b

This relation is stable under addition and multiplication, that is for every a, b, c ∈ N, if
a ≤ b, then

1. a+ c ≤ b+ c, and

2. a× c ≤ b× c,

Thus, the structure (N,+,×) is an ordered semiring, and because there is no natural
number between 0 and 1, there is no natural number between n, n+ 1, hence becomes a
discrete ordered semiring. Then we state the axiom of induction in its strong form: For
any predicate ϕ

1. ϕ(0) is true,

2. For every n, k ∈ N and k ≤ n, if ϕ(k) is true, then ϕ(S(n)) is true. Then ϕ(n) is
true for all natural numbers n.
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This form of the induction axiom is a simple consequence of the standard formulation,
but it is often more suited for reasoning about the order. Now we show that the naturals
are well-ordered : every nonempty subset of N has a least element. LetX ⊂ N, a nonempty
subset with X no least element.

1. 0 is a least element of N, hence 0 /∈ X.

2. If for every k ≤ n, k /∈ X implies that S(k) /∈ X, as if it were, then it would be the
least element of X.

Hence by the strong induction principle, for all n ∈ N, n /∈ X, which means that X∩N =
∅, which contradicts the fact that X is nonempty.

The following demonstrates the set-theoretic model of the natural numbers. The
Peano axioms can be derived from set theoretic constructions of the natural numbers and
axioms of set theory such as the ZF. Let 0 := ∅, with S(a) = a ∪ {a}. Then the natural
number is defined to be the intersection of all sets closed under s that contains the empty
set. Each natural number is equal (as a set) to the set of natural numbers less than it:

1. 0 = ∅,

2. 1 = s(0) = ∅ ∪ {∅},

3. 2 = s(1) = s({∅}) = {∅} ∪ {{∅}} = {∅, {∅}} = {0, 1}

and so on. Then N with 0 and the successor function s satisfies the Peano axioms. “Peano
arithmetic” is equiconsistent with several weak systems of set theory. One such system
is ZFC with the axiom of infinity replaced by its negation. We see that by Godel that a
consistency proof cannot be formalized within Peano arithmetic itself. This rules out the
finitistic consistency proof. However, Gentzen gave a consistency proof using transfinite
induction which is arguably finitistic as transfinite ordinal can be encoded in terms of
finite objects. The problem comes from not giving a precise definition of what it means to
be finitistic, but both Hilbert and Gentzen could not come up with a generally accepted
definition.

Citation: https://en.wikipedia.org/wiki/Peano_axioms, 2015-12-20, the page was
last modified on 8 November 2015, at 23:39.



8 CHAPTER 1. CONSTRUCTION OF NUMBERS



Chapter 2

Number Fields

2.1 Integral Extensions

We would like to show that for finitely generatedOK-module A ⊂ A′ satisfies the following

d(v1, . . . , vn) = [A′ : A]d(w1, . . . , wn)

then it suffices to show that the determinant of a change of basis matrix T that sends
the Z-basis of A′ to the Z-basis of A is equal to the index of [A′ : A].This follows from
the well-known results from module theory, namely

1. Bi ⊂ Ai be submodules, then ⊕Bi ⊂ ⊕Ai is a submodule and we have the module-
isomorphism

(
⊕

Bi)/(
⊕

Ai) =
⊕

(Bi/Ai)

2. Let Ax be a free principal module over a principal ideal domain A. If N ⊂ Axi,
then because we have unique representation, we may talk about the subset of A
which comprises of all the “coefficients” of N which forms an ideal, and denote it
A. Then because A is a principal ideal domain, A = (d) for some d ∈ A. Hence
N = A(dx).

3. Let M = M1 ⊕ · · · ⊕Mn be a free A-module, then a submodule N of M is of the
form N1 ⊕ · · · ⊕ Nn where Ni are A-submodule of Mi. If M is a free A-module of
the form Ax1⊕ · · · ⊕Axn, then by the above remark, we get that the submodule is
of the form Ad1x1 ⊕ · · · ⊕ Adnxn for some di ∈ A.

By 3 above, we get that A′ = Zx1 ⊕ · · · ⊕ Zxn, then A = Zd1x1 ⊕ · · · ⊕ Zdnxn, then by
1, we get that

A′/A =
⊕

(Zxi)/(Zdixi) =
⊕

Z/Zdixi

then

|A′/A| =
∏

di

This is exactly the determinant of the change of matrix that sends xi 7→ dixi, where
the matrix representation of the transformation is the diagonal matrix with its entries
d1, . . . , dn.
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2.2 Quadratic Extensions

We are interested in K = Q(
√
D) where d is square-free. We want to determined the

ring of integers OK . First we observe that K/Q has degree 2, so the extension is normal.
Because Q has characteristic 0, the extension is separable, hence Galois. The reader
can easily check that K → K defined by

√
D 7→ −

√
D, which can be viewed as an

isomorphism between the splitting fields of x2 −D over Q is indeed an automorphism of
K fixing Q.

We know that all elements in Z[
√
D] is integral because (x − (a + b

√
D))(x − (a −

b
√
D)) = x2− 2ax+ (a2− b2D) gives an monic irreducible with coefficient in Z. Now we

assume that α ∈ Q(
√
D)\Z[

√
D], i.e.

α =
a

b
+
c

d

√
D

then consider the minimal polynomial f of α over Q, then if we let a be the map
√
D 7→

−
√
D, f(α) = 0 ⇒ f(α) = f(α) = 0. Z being integrally closed implies that f ∈ Z[x].

In fact, as α, α integral implies that f has coefficients in Q ∩OK = Z. This implies that

2a

b
,
a2

b2
− Dc2

d2
∈ Z

with assuming that a, b are relatively prime and c, d are relatively prime. If b = 1, then
we get (Dc2)/d2 ∈ Z which is impossible unless d2|D, but we have that D is squarefree.
Hence b ≥ 2. Let p be a odd prime dividing b, then p|2a ⇒ p|a, which contradicts
(a, b) = 1. Hence b is a power of 2. If b = 2n with n ≥ 2, then 2n|2a ⇒ 2n−1|a which
again contradicts (a, b) = 1. We may conclude that b = 2.

Now we focus when
a2

4
− Dc2

d2
=
a2d2 − 4Dc2

4d2
∈ Z

Then we have that the numerator is divisible by 4. Modding out by 4, we get a2d2 is
even. Because b is even, then a has to be odd. i.e. d is even. We then have d = 2k for
some k, and the above transforms to

4a2k2 − 4Dc2

16k2
=
a2k2 −Dc2

4k2
∈ Z

Suppose a prime p divides k, then we have that p|a2k2−Dc2 ⇒ p|Dc2. Because (c, d) = 1,
we have that p divides D, and because D is squarefree, p does not divide (D/p). Then
we get

a2k2 −Dc2

4k2
=
a2(pl)2 −Dc2

4(pl)2
=
a2pl2 − (D/p)c2

4pl2
∈ Z

then p|4pl2|a2pl2 − (D/p)c2 ⇒ p|(D/p)c2 ⇒ p|(D/p) which leads to a contradiction.
Hence k = 1. We finally have the form

a2 −Dc2

4
∈ Z

with a, c odd. Let’s mod the numerator by 4, then we get 1−D ≡ 0, hence there exists a
element α ∈ Q(

√
D)\Z[

√
D] only if D ≡ 1 mod 4. Clearly, all 1

2
(a + b

√
D) is generated

by 1
2
(1 +

√
D) and 1 which are both integral, hence integral itself. To conclude we have

the following,
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1. D ≡ 2, 3 mod 4, then OK = Z + Z[
√
D]

2. D ≡ 1 mod 4, then OK = Z+Z[1
2
(1+
√
D)] which is strictly larger than Z+Z[

√
D].

This gives an example of when K/Q a number field, then by the primitive element
theorem K = Q(θ), then the ring of integers is not always Z[θ].

Then for the first case, we have the determinant(
det

(
1
√
D

1 −
√
D

))2

= (−2
√
D)2 = 4D

and for the second case,(
det

(
1 1

2
(1 +

√
D)

1 1
2
(1−

√
D)

))2

= (−
√
D)2 = D


