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1 Limits

1.1 What is a limit?

Suppose f (x) is defined when x is near the number a. (This means that f is defined on some open interval,
(h,k), where h < a < k except possibly f (a).) Then we write:

lim
x→a

f (x) = L

and say “The limit of f (x) as x approaches a, equals L.”

Basically a limit is the number that the function “wants” to be, but when you plug in an x-value, we get

an undefined answer.
( x

0
where x 6= 0, or

0
0

)
There are 3 ways to find limits:

1. Tables

2. Graphs

3. Algebraically (our favorite ¨̂ )

Algebraic limits are the most difficult to solve, and it can involve any of the following methods.

1. Factoring

2. Multiplying by the conjugate

3. Common denominators

4. Multiply by the reciprocal

Let’s try one!

1.2 Example

lim
t→1

t4−1
t3−1

First off, we can notice that we can’t just plug in 1 because then we would get
0
0

, and we can’t divide by 0.
To fix this, we must algebraically rearrange the fraction so we can plug in 1. Let’s start by factoring.

lim
t→1

(x2 +1)(x+1)(x−1)
(x−1)(x2 + x+1)

This is great because now we can cancel (x−1) from the numerator and denominator.

lim
t→1

(x2 +1)(x+1)
(x2 + x+1)

Now if we plug in 1 we get
4
3

. This means we can say the limit is
4
3

!
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1.3 Conceptual ideas about limits

1. When we plug in a number to a function and get
x
0

where x 6= 0, we have a vertical asymptote.

2. If we plug in a number to a function and get
0
0

we have a hole in our graph.

1.4 More Limit notation

lim
x→a+

f (x)

This is read “The limit of f (x) as x approaches a from the right side, equals L.”

lim
x→a−

f (x)

This is read “The limit of f (x) as x approaches a from the left side, equals L.”

You might be wondering, “Why do we have left and right limits?” If you look at the graph of f (x) =
1
x

,
you might understand.

As you can see, lim
x→0−

1
x
=−∞, and lim

x→0+

1
x
= ∞, and thus a distinction needs to be made

2 Continuity

We can say a function is continuous at a point a if (a, f (a)) exists, and

lim
x→a−

f (x) = lim
x→a+

f (x) = f (a)

In other words, if a function connects from both sides and you can actually plug in a to the function.

A function is continuous from the right at a if (a, f (a)) exists and

lim
x→a+

f (x) = f (a)

A function is continuous from the left at a if (a, f (a)) exists and

lim
x→a−

f (x) = f (a)
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We have 4 types of discontinuities.

1. Removable-In this discontinuity, lim
x→a

f (x) = L. f (a) might exist, but f (a) 6= L.

2. Infinite-In this discontinuity, lim
x→a

f (x) =±∞, and (a, f (x)) does not exist.

3. Jump-In this discontinuity, lim
x→a−

f (x) 6= lim
x→a+

f (x). f (a) might exist.

4. Oscillating-In this discontinuity, the function oscillates infinitely many times in a finite distance, and

thus is impossible to find the limit. An example is f (x) = sin
(

1
x

)

3 Limits involving infinity

When we talk about limits involving infinity, we are talking about what a function does as x goes to positive
or negative infinity. We have two options, either the function just keeps getting bigger (smaller) and goes
off to infinity (negative infinity), or the function gets closer to one specific number. We call this number a
horizontal asymptote. To find a horizontal asymptote we need to find out what f (x) is doing as it goes out
to ±∞.

In other words we need to take the limit as our function goes to positive or negative infinity.

lim
x→∞

f (x)

To be more formal we can let f be a function defined on some interval (a,∞). Then

lim
x→∞

f (x) = L
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means that the values of the function can be made arbitrarily close to L by requiring x to be sufficiently large.
You can flip this definition to work for −∞ too.

Now that we can find our limit (L) there is one thing that we need to realize. Our horizontal asymptote
is a horizontal line not just a value. Therefore, the asymptote is not L, but x = L.

We know we need to, but how do we take a limit to infinity?
I am glad you asked!

All we do is divide every term by the biggest power in the denominator, and simplify from there.

**Note that in the following problem, lim
x→∞

1
xn will come up. If we think about this, the denominator

will get very large, and thus making
1
xn very small. Thus, if n > 0, lim

x→∞

1
xn = 0 (this is true no matter what

constant is on top).

lim
x→∞

3x2− x−2
5x2 +4x+1

x2 is the largest power in the denominator

so we will divide every term by x2

= lim
x→∞

3x2

x2 − x
x2 − 2

x2

5x2

x2 + 4x
x2 +

1
x2

We simplify each term with algebra.

= lim
x→∞

3− 1
x −

2
x2

5+ 4
x +

1
x2

Remember the note.

=
3−0−0
5+0+0

=
3
5

Therefore our horizontal asymptote is x =
3
5

4 Tangent lines and derivatives.

A tangent line is a line that touches our function f at one and only one point. It touches our graph and skips
off.

As you already know, the equation for the slope between 2 points (secant line) is m =
y1− y0

x1− x0
. Now let’s

say P0 = (a, f (a)), and P1 = (a+h, f (a+h). All h is saying is that our second point is a horizontal distance
away from our origional point (Look at the picture).
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If we write our slope equation with these two points, we can say

m =
f (a+h)− f (a)
(a+h)−a

We can simplify the denominator to be

m =
f (a+h)− f (a)

h
As we know, slope needs rise and run, but in a tangent line, there is no run. As we can see, our h is the run.
Since a tangent line has no run, what if we take the limit as h goes to 0?

m tangent line = lim
h→0

f (a+h)− f (a)
h

In calculus, we like to call the slope of the tangent line the DERIVATIVE!
Now let’s try finding the slope of the tangent line with some numbers.

f (x) = x2−3x+6, at (a, f (a)) = (2,4)

This would mean (a+h) = (2+h) and f (a+h) = f (2+h)

lim
h→0

f (a+h)− f (a)
h

= lim
h→0

(2+h)2−3(2+h)+6−4
h

Expand everything.

= lim
h→0

4+4h+h2−6−3h+6−4
h

Cancel/combine like terms.

= lim
h→0

4h+h2−3h
h

Factor out an h

from every term in the numerator.

= lim
h→0

h(4+h−3)
h

= lim
h→0

4+h−3

=1
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If we use point slope form, with a slope of 1 and a point of (2,4), we can say the tangent line is

y−4 = 1(x−2).

Questions:

1. Can we find a function, call it f ′(x), so that we can plug in any value of x and get the slope of the
tangent line at that point?

2. What happens if we let a be x? (Remember a stands for a specific number and x is generalized)

Let’s try the same function as before. f (x) = x2−3x+6

lim
h→0

f (x+h)− f (x)
h

= lim
h→0

(x+h)2−3(x+h)+6− (x2−3x+6)
h

= lim
h→0

x2 +2xh+h2−3x−3h+6− x2 +3x−6
h

= lim
h→0

2xh+h2−3h
h

= lim
h→0

h(2x+h−3)
h

=2x−3

Let’s name this function f ′(x) (read as “‘f’ prime of ‘x’”). This means f ′(x) = 2x−3. If we plug in x = 2,
we should get 1 (because we originally let a = 1 the first time).

f ′(2) = 2(2)−3 = 1

It worked!!! You can check this for any value for x, and it will always work out! f ′(x) is the derivative of
f (x) because when we plug in a value for x in f ′(x), we will get the slope of f (x), and that is the derivative!

Basically, the big take away from this is the definition of the derivative is

f ′(a) = lim
h→0

f (a+h)− f (a)
h

and the general form of the derivative is

f ′(x) = lim
h→0

f (x+h)− f (x)
h
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5 Higher order derivatives

A higher order derivative is the derivative of the derivative. So basically, we like taking derivatives so much
that we do it again and again!!!

Let’s start with a function f (x) =
√

x3. If we want to find the second derivative of f (x), or f ′′(x), then
we need to start with taking the first derivative of the function, or f ′(x). To take the derivative, we need to

again take the limit lim
h→0

f (x+h)− f (x)
h

lim
h→0

√
(x+h)3−

√
x3

h
Multiply by conjugate.

= lim
h→0

(x+h)3− x3

h(
√
(x+h)3 +

√
x3)

Expand.

= lim
h→0

x3 +3x2h+3xh2 +h3− x3

h(
√
(x+h)3 +

√
x3)

Combine like terms.

= lim
h→0

3x2h+3xh2 +h3

h(
√
(x+h)3 +

√
x3)

Factor and divide by h

= lim
h→0

3x2 +3x2 +h2√
(x+h)3 +

√
x3

=
3x

1
2

2
= f ′(x)

Now to find the second derivative we get to do that again except this time we use
3x

1
2

2
= f ′(x)!!!

lim
h→0

3
2(x+h)

1
2 − 3

2 x
1
2

h

= lim
h→0

3
2(
√

x+h−
√

x)
h

= lim
h→0

3
2(x+h− x)

h(
√

x+h+
√

x)

= lim
h→0

3
2 h

h(
√

x+h+
√

x)

=
3

4
√

x
= f ′′(x)

We can continue to take the next derivative as many times as we want. One quick note on notation
though, f ′(x) = f 1(x), and f ′′(x) = f 2(x), and so on.
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6 What can we differentiate?

We can’t differentiate everything. This section talks about times when we can’t find a derivative.

1. Whenever there is a corner in the graph we can’t find a derivative.

2. If there is a vertical tangent line there is no derivative because the slope is undefined.

3. There is also no derivative at any discontinuity (our function must be continuous).

7 Derivative notation

Now that we are working with derivatives, we need to know some notation.

Leibniz notation:
d
dx

( f (x)) is a way to say the derivative with respect to ‘x’.” In this notation, the x can

be any variable. Let’s say we have
d
dy

y2, we would just treat y as our variable. If we have something like

this:
d
dx

y2x2, we would just treat y as a constant. This will make more sense as we go.

8 Basic derivative rules

As you could imagine, using the definition of the derivative all the time would be very annoying, and
complicated functions could be very easy to mess up. Don’t worry, we have shortcuts!!!

1. Constant Rule: The derivative of a constant is 0.

d
dx

(c) = 0

2. Power Rule:
d
dx

x2 = 2x, in general,
d
dx

(xn) = nxn−1
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3. Constant Multiple Rule: We can factor out a constant before we take our derivative.
d
dx

2x2 =

2
d
dx

x2 = 2(2x) = 4x.
d
dx

(
c f (x)

)
= c

d
dx

f (x)

4. Sum and Difference Rules: We can split up derivatives at plus and minus signs, and take the deriva-
tives of each term.

d
dx

(
f (x)+g(x)

)
=

d
dx

f (x)+
d
dx

g(x)

d
dx

(
f (x)−g(x)

)
=

d
dx

f (x)− d
dx

g(x)

5. Natural exponential function:
d
dx

ex = ex

Let’s find a derivative!

d
dx

(
x2 + x−2

x+2

)
We have a problem because we have a fraction, and we can’t do anything with that. Let’s try to rearrange it
so it ends up being in a line.

d
dx

(
x2 + x−2

x+2

)
=

d
dx

(
(x−1)(x+2)

x+2

)
=

d
dx

x1−1

=1

At the end, we used the difference, power, and constant rules.

9 Specialized derivative rules

9.1 Product Rule

Now that you are familiar with what a derivative is, we can start looking at some special situations that will
come up. One of these situations is when we have a function times a function, or something along the lines
of d

dx( f (x)g(x)). These functions need to be something we can’t combine. If we had x2(x3), we could just
say that is x5, and then just use power rule. However, if we have something like xex, we can’t combine those.
If you use the definition of the derivative (the limit thing), you would find the following:

12



d
dx

xex = xex + ex

This is very different than this: (
d
dx

x
d
dx

ex
)
= 1ex = ex

Clearly, somewhere along the line, something happened. This picture shows in terms of geometry what is
happening visually.

The first method we tried (the definition of the derivative) found the colored area, and the second only found
the green corner.

The formula for product rule is
d
dx

( f g) = f g′+g f ′. Here’s an example:

d
dx

(xex)

First off, we have to recognize which function is f and which is g. With the product rule, it doesn’t actually
matter.

f = x g = ex

f ′ = 1 g′ = ex

Now that we have our 4 functions, we just follow the formula.

d
dx

(xex) = x(ex)+(ex)1 = xex + ex

This is what we got with the definition of the derivative!

9.2 Quotient Rule

A second special situation we have is a function divided by a function, or something along the lines of
d
dx

(
f (x)
g(x)

)
. These functions need to be something we can’t combine easily. If we had x2

x3 , we could just say

13



that is 1
x = x−1, and then just use power rule. However, if we have something like x2+x−2

x3+6 , we can’t combine
those easily. If you use the definition of the derivative, you would find the following:

d
dx

(
x2 + x−2

x3 +6

)
=

(x3 +6)(2x+1)− (x2 + x−2)(3x2)

(x3 +6)2

This is very different than this:  d
dx

(x2 + x−2)

d
dx

(x3 +6)

=
2x+1

3x2

Clearly, somewhere along the line, something happened.

The formula we have for quotient rule is
d
dx

f (x)
g(x)

=
g(x) f ′(x)− f (x)g′(x)

g(x)2 . Here is an example:

d
dx

(
x2 + x−2

x3 +6

)
First off, just like product rule we have to recognize which function is f and which is g. In quotient rule, the

numerator is ALWAYS f and the denominator is ALWAYS g. So
f
g

.

f = x2 + x−2 g = x3 +6

f ′ = 2x+1 g′ = 3x2

Now that we have our 4 functions, we just follow the formula.

d
dx

(
x2 + x−2

x3 +6

)
=

(x3 +6)(2x+1)− (x2 + x−2)(3x2)

(x3 +6)2

9.2.1 Derivatives of trigonometric functions USING QUOTIENT RULE

What are trig functions?
TRIG IDENTITIES:

tan(x) =
sin(x)
cos(x)

cot(x) =
cos(x)
sin(x)

sec(x) =
1

cos(x)

csc(x) =
1

sin(x)

Derivatives of trig functions can be a lot to remember, but if you can remember these identities, you can
always use quotient rule to find them. Two derivatives you have to remember though are sinx and cosx.
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d
dx

sinx = cosx
d
dx

cosx =−sinx

If you know these two, we can extrapolate our list to become this:
(let “→” be a derivative) ←−−−−−−−−−−−−−−−−−−−−−−−

sinx→ cosx→ − sinx→ − cosx

Basically, this picture shows how the derivative of sinx and cosx will loop forever.

Combining this chart, quotient rule, and the trig identities shown above, we get the following table.

f (x) f ′(x)

sin(x) cos(x)

cos(x) −sin(x)

tan(x) sec2(x)

cot(x) −csc2(x)

sec(x) sec(x) tan(x)

csc(x) −csc(x)cot(x)

9.3 Chain Rule

A third special situation we have is a composite function, or something along the lines of d
dx ( f (g(x))).

These kinds of function can’t be combined. If we have something like
√

x2 +1, and we use the definition of
the derivative, you would find the following:

d
dx

(√
x2 +1

)
=

x√
x2 +1

This is very different than this:
d
dx

(√
d
dx

x2 +1

)
=

1√
2x

The formula we have for chain rule is f ′(g(x))g′(x). Here’s an example:

d
dx

(√
x2 +1

)
First off, just like product and quotient rule, we have to recognize which function is f and which is g. With
composite functions, the “outside” function is f , and the “inside” function is g. Another way to decide
which is f and which is g is that g is the function you would have to evaluate first in order to solve for a
value, and f is the second function. So with

√
x2 +1, x2 + 1 is inside the square root function (√ ). You

would also have to evaluate x2+1 first before you could find the square root of the value. Therefore, f =
√

x
and g = x2 +1.
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f =
√

x g = x2 +1

f ′ =
1

2
√

x
g′ = 2x

Following our formula we get

d
dx

(√
x2 +1

)
=

1
2
√

x2 +1
2x =

2x

2
√

x2 +1
=

x√
x2 +1

10 Exponential Functions

Exponential functions are written in the form f (x) = bx. To take the derivative of an exponential function
like 2x for example, we must first realize that we can rewrite 2x as e(ln2)x. We can so this because elnx = x.
Also because of exponent rules, we can then write (ln2)x as (ln2)x. Let’s take it from this point: e(ln2)x.

Using chain rule:

e(ln2)x

f = ex g = (ln2)x

f ′ = ex g′ = ln2

f ′(g(x))g′(x)

e(ln2)x ln2

=2x ln2

In general,
d
dx

(bx) = bx lnb.

11 Implicit Differentiation

We have been taking the derivatives of functions with respect to one variable (most of the time x) by using

Leibniz notation. For example,
d
dx

(x2) is read as “the derivative of x squared with respect to x.” What
happens if we have to take the derivative of a function that has 2 variables? What if we have to take the
derivative of x2 + y2 = 1 (this is the equation for a circle centered at the origin with a radius of 1 [the unit
circle])?

This is where Leibniz notation plays a bigger role. Just remember,
d
dx

is the derivative WITH RE-
SPECT TO x. Let’s just work through this derivative as I explain.
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d
dx

(x2 + y2 = 1)

=
d
dx

x2 +
d
dx

y2 =
d
dx

1

=2x+
d
dx

y2 = 0 (We aren’t done yet)

Let’s talk a little more about Leibniz notation. We have seen d
dx a lot so far, but we are going to add

something to our notation. If we have dy
dx , we say “The derivative of y with respect to x.” This is saying that

y is a function of x. In other words, we are implying y(x) is a function even though we don’t know what y(x)
equals.

Now let’s worry about the “weird” part. What is
d
dx

y2? Whenever we take a derivative with respect to x

( d
dx) of a variable other than x (y in this case) we need to multiply by the derivative of that variable (y in this

case) with respect to x ( dy
dx in this case). Think of y as a function y(x).

Observe:

d
dx

(y2)

=
dy
dx

2y

Basically, we take the derivative of y like normal (y2→ 2y), and then multiply by dy
dx which is read “the

derivative of y with respect to x.” In a sense we are treating y as a function inside the larger function (that
sounds a lot like the chain rule). Now we have to finish up our problem.

We now have 2x+2y dy
dx = 0, and we need to solve for dy

dx because we want to know the derivative of y.

2x+2y
dy
dx

=0

2y
dy
dx

=−2x

dy
dx

=
−2x
2y

dy
dx

=
−x
y

Great! We solved the problem! What does the answer tell us though? If we go back to the original
equation of our circle, x2 + y2 = 1, we know we had a circle with a radius of 1. By taking the derivative, we
were finding the slope of the tangent line at any point of the circle, but since we had 2 variables we can’t
explicitly define the slope with one variable, instead, we had to implicitly define it with 2.

Remember when I said think of y as a function in terms of x? We didn’t know the function, and we still
don’t, but what if just for kicks and giggles, we said y = 3x2 + x. In our equation we had a y2. Well, if we
substitute 3x2 + x in for y we have y(x) = (3x2 + x)2. This looks awful lot like chain rule, in which case we
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do the following:

d
dx

(3x2 + x)2

f = x2 y = 3x2 + x

f ′ = 2x y′ = 6x+1
d
dx

= 2(3x2 + x)(6x+1)

Now if we look at our answer, and put it back in terms of y (remember y = 3x2 + x, and y′ = 6x+1) we get

2y(y′).

Which is the same as 2y dy
dx .

We can say that y′ = dy
dx because y′ is the derivative of y with respect to x because y was in terms of x.

When we do implicit differentiation, we are basically doing a speed version of the chain rule because y (or
z, or r, or any other variable) is itself a function in terms of x.

Let’s try one more example.

d
dx

(y4 + xy = x3− x+2)

d
dx

y4 +
d
dx

(xy) =
d
dx

x3 +
d
dx

2

d
dx

y4 +
d
dx

(xy) = 3x2

Now that we took the basic derivatives, let’s look at what we have left.

d
dx

y4

First we have to remember that y represents an equation in terms of x. Just like x can be 3 in one equation
and 18 in another, y can represent whatever it wants. For kicks and giggles, what if we make up something
that y represents. What happens if y = x2 + x.

d
dx

y4 =
d
dx

(x2 + x)4

⇑
This looks like chain rule
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f ′(g(x))g′(x)

f = x4 g = x2 + x

f ′ = 4x3 g′ = 2x+1

4(x2 + x)3(2x+1) =4y3y′

=4y3

(
dy
dx

)

As we can see if we take the derivative of y like normal, and then multiply by y′ which is equal to
dy
dx

we are just doing the chain rule quickly. REMEMBER we DON’T actually know what y is. That’s why we
need to keep it as y.

We have one last derivative to take
d
dx

(xy)

If we look at this, we can see that if y is a function in terms of x, we have a function times a function
(product rule).

( f g′)+(g f ′)

f = x g = y

f ′ = 1 g′ = 1
dy
dx

=
dy
dx

d
dx

(xy) =x
dy
dx

+ y

Now we have all our parts of our equation, and we can solve for
dy
dx

4y3

(
dy
dx

)
+ x

(
dy
dx

)
+ y =3x2

4y3

(
dy
dx

)
+ x

(
dy
dx

)
=3x2− y

dy
dx

(4y3 + x) =3x2− y

dy
dx

=
3x2− y
4y3 + x
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12 Natural log function

We can find the derivative of lnx = 1
x using implicit differentiation.

d
dx

x =1

d
dx

elnx =1

Chain rule.

elnx d
dx

lnx =1

x
d
dx

lnx =1

d
dx

lnx =
1
x

Because
d
dx

lnx =
1
x

, we can use the chain rule to find any derivative of the form ln(g(x)).

d
dx

ln(x2)

f = lnx g = x2

f ′ =
1
x

g′ = 2x

d
dx

ln(x2) =
2x
x2

13 Applications of Derivatives

Let’s say we are given a function that represents position at any time t in seconds (s(t)). Let’s do some
exploring.

s(t) = t3−6t2 +9t

1. Find a representation of the velocity in terms of time.

Using some intuition we could think about velocity as the change in our position. This means that the
derivative of our position function would be equal to our velocity.

d
dt

s(t) = v(t) = 3t2−12t +9
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2. Where is the velocity equal to 0?

If we factor our velocity equation, and set it equal to 0, we can find where the velocity is 0, or when
the particle is not moving.

(3t−3)(t−3) = 0

t = 1 and t = 3

3. Where is the particle moving in a positive direction?

We need to see where the velocity function is positive (using interval notation we find):

(0,1) and (3,∞)

Notice the open parenthesis. This is because our particle is not moving at 0, 1 or 3 seconds.

4. Describe how the velocity is changing.

Starting at t = 0, the particle is moving in a positive direction (left to right). At t = 1, the particle
stops moving and turns around. It is now going in a negative direction (right to left) until t = 6. At
this point, the particle stopped again and switched directions. It took off in a positive direction (left to
right) forever.

5. Find the acceleration at t = 4.

We can think of acceleration as the change in our velocity which means acceleration is the derivative
of velocity. Therefore,

d
dx

v(t) = a(t) = 6t−12⇒ a(4) = 12

.

6. Graph s(t), v(t), and a(t).

21



7. When is the particle speeding up and slowing down?

We know if we are slowing down our acceleration is negative and if we are speeding up the accelera-
tion is positive.

Slowing down⇒ (0,2)

Speeding up⇒ (2,∞)

The big take away here is that given a position function, we can find velocity, and given velocity, we can
find acceleration.

d
dt

s(t) = v(t)

d
dt

v(t) = a(t)

14 Natural growth and decay.

When we look at functions that change by a constant ratio over time. Derivatives take the form

y(t) = k
(
y(0)ekt)

where k is the rate of your growth or decay, and y(0) is the initial amount, and t is time.
Look at this table. We can complete it using calculus!

Year Population (millions)

1950 2560

1960 3040

1993

2020

We begin by setting up our equation

y(t) = y(0)ekt

Plug in known values.
3040 = 2560e10k

We can say this because the original population y(0) = 2560 and the population 10 years later is 3040.
From here, we can solve for k.
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3040 = 2560e10k

Divide both sides by 2560.
3040
2560

= e10k

Take natural log of both sides (ln).

ln
(

3040
2560

)
= lne10k

Cancel lne = 1 on right side

ln
(

3040
2560

)
= 10k

Divide by 10
1
10

ln
3040
2560

= k

Now we have

2560e

(
1
10 ln 3040

2560

)
t

.
From here we can fill in our table by making t = 43 and t = 70.

Year Population (millions)

1950 2560

1960 3040

1993 5360

2020 8524

15 Related Rates.

Related rates is an application of implicit differentiation (Section 11). As the name says we want to discover
how things that are changing are related. That sounds a little weird, so let me explain. If we are draining a
pool (changing the volume of water in the pool), can we find out how fast the depth of the water is changing?
Based on velocity, can we tell how fast two things are moving away from (or getting closer to) each other?
These are things we can answer with related rates problems. Let’s see how it works!

15.1 Example 1

Air is being pumped into a spherical balloon at a rate of 5 cm3/min. Determine the rate at which the radius
of the balloon is increasing when the diameter of the balloon is 20 cm.

23



Our first step is to recognize what we are looking for. In this case we are trying to find how fast the
radius is changing at a specific time. In terms of Leibniz notation, we are looking for the derivative of the
radius with respect to time ( dr

dt ). In other words, we want to know how fast the radius is changing at any

time t. That means we are looking for a function r′(t) or
dr
dt

= .
Next we need to brake down what we know.

1. How fast the volume is changing. Change in volume over time
dV
dt

=5cm3/min

2. Diameter at the point we want to know is 20 cm. d = 20 r = 10

First we need to find an equation that connects volume and radius of a sphere. One equation we have for
the volume of a sphere is V = 4

3 πr3. Let’s try taking the derivative with respect to time.

d
dt
(V =

4
3

πr3) Using implicit differentiation we get

dV
dt

= 4πr2 dr
dt

Now we have the change in volume over time, the change in radius over time, and radius as variables in our
new equation.

At the beginning of the problem we decided, “We are trying to find how fast the radius is changing over
time ( dr

dt ).” Let’s solve for dr
dt .

dV
dt

= 4πr2 dr
dt

dV
dt

4πr2 =
dr
dt

We know
dV
dt

= 5cm3/min, and r = 10. Thus we can say,

5
4π102 =

dr
dt

=
5

400π
=

1
80π

. We know
dr
dt

is a rate so our label is cm/min, so
dr
dt

=
1

80π
cm/min.

When we solve related rates problems, we want to find or make an equation that related everything.
Then, when we take the derivative with respect to time (normally), we get an equation that relates the rates
of everything. We can then solve for the rate we want and plug in what we know.

15.2 Things to look for/do

When doing related rates problems, there are a few things that you can look for that will make problems
easier/possible.

1. Similar triangles
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2. Pythagorean’s Theorem

3. Geometric formulas

4. Drawing a picture

5. Implicit differentiation

16 First and Second derivative test

Derivatives tell us information about a function. A critical point or critical number of a function is a
minimum, maximum or a vertical asymptote. In other words, the critical points of a function occur when
the first derivative of a function is 0 or undefined. The second derivative can tell us where our concavity
switches (I will explain what concavity is later). These points where we switch from concave up to concave
down are called inflection points. An inflection point can be found when the second derivative is 0. Let’s
look at how these tests work.

The first derivative test gives us our critical numbers. By finding where the derivative is 0 or where it
doesn’t exist. Let’s have f (x) = x4−4x3

f ′(x) = 4x3−12x2

0 = 4x2(x−4)

x = 0,4

Thus, in this case we have critical numbers at x = 0, and x = 4.

Critical numbers tell us when we have a local minimum, local maximum, where the function is flat, or
a vertical asymptote. The way we can interpret our data is with a sign chart. If we think about what zeros
of a function mean, we know the only time the our function output will change from positive to negative (or
vis versa), is when we cross the x-axis (at a zero of the function). Combining this intuition with the zeros
of our derivative, we know that our function has to either be increasing or decreasing from on each of the
following segments. (−∞,0), (0,4) and (4,∞). With a sign chart, we can test one number in each segment
in order to see if our function is increasing or decreasing.

f ′(x) = 4x2(x−4)

Segment (−∞,0) (0,4) (4,∞)

Test Point f ′(−1) =−20 f ′(1) = 100 f ′(5) = 125

Sign - - +

Direction ↘ ↘ ↗
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From this table, we can see f (x) has a negative slope in the segments (−∞,0) and (0,4) and a positive
slope in the segment (4,∞). This means our graph is going down and then at x = 0, our function flattens out,
and then proceeds to go down again. We have a negative slope until x = 4, and then our slope goes positive
from then on. If we think about what this would look like, we would have a local minimum, and actually an
absolute minimum, at x = 4.

Now we need to find the inflection points of the graph which we can do by setting the second derivative
equal to 0. The inflection points, like I said before, are points where our function switches from concave up
to concave down. Concavity is a word used to describe the shape of the graph. If our graph is concave up, it
will be shaped like a bowl (like the graph of y = x2). If our graph is concave down, it will be shaped like an
arch (like the graph of y =−x2). An inflection point is where a graph switches from one kind of concavity
to another. Here is a picture.

As you can see, the tangent line is on top of the function when concave down, and underneath when concave
up. The inflection point of this graph is at x = 0. Let’s look at our function again.

f ′′(x) = 12x(x−12)

0 = 12x(x−12)

x = 0,12

Thus, we have an inflection point at x = 0 and x = 12.
When we make our sign chart, a negative second derivative implies that the graph is concave down.

Oppositely, a positive second derivative implies that the graph is concave up.

Segment (−∞,0) (0,12) (12,∞)

Test Point f ′′(−1) = 156 f ′′(1) =−132 f ′′(13) = 156

Sign + - +

Shape ^ _ ^
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From this table we can see the concavity switches from concave up to concave down at x = 0, and back
to concave up at x = 12.

16.1 Completing and Interpreting Data to Graph a Function

In order to make an accurate sketch of a graph we need to know what the function is doing as it goes to
positive or negative infinity (the asymptotes). If you remember from section 3, this means we need to find
the following limits OF THE ORIGIONAL FUNCTION f (x). (We are still using the same function as in
section 16)

lim
x→∞

f (x)

= lim
x→∞

x4−4x3 = ∞

lim
x→−∞

f (x)

= lim
x→−∞

x4−4x3 = ∞

It is also good to have x intercepts (y = 0) and y intercept (x = 0) of your function. If we do this, we get
an intercept at (0,0), and (4,0).
Here is a complete list of everything we need to know what a graph looks like:

1. What are the x and y intercepts of the graph?

2. What is the domain of the graph?

3. Does the graph have any asymptotes? If yes, what are they?

4. What are the intervals of increase decrease?

5. What are the local minimum and maximum values?

6. What are the intervals of concavity?

7. What are the inflection points?

If we put all this information together, we will get a graph that
looks similar to this!!!
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17 L’Hospital’s Rule

L’Hospital’s Rule is an easier way to get around limits that are in indeterminate forms. To use L’Hospital’s
Rule a function MUST be in an indeterminate form.

There are 7 different indeterminate forms:

1.
0
0

2.
±∞

±∞

3. 0×∞

4. ∞−∞

5. 00

6. 1∞

7. ∞0

L’Hospital’s Rule states: Suppose f and g are differentiable and g′(x) 6= 0 on an open interval I that
contains a (except possibly at a). Suppose that

lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0

or that lim
x→a

f (x) =±∞ and lim
x→a

g(x) =±∞

Then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

So what does that mean?
Basically, if you are trying to take a limit, and when you plug in your “a” you get either

0
0

or
±∞

±∞
, then take

the derivative of the top, and the derivative of the bottom (SEPRATELY don’t use quotient rule), and then
compute the limit. For example,
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lim
f (x)
g(x)

= lim
x→1

x2− x
x2−1

=
0
0

= lim
f ′(x)
g′(x)

= lim
x→1

2x−1
2x

=
1
2

That is great when we are in the forms
0
0

or
±∞

±∞
, but there are other indeterminate forms that we listed

earlier. What do we do when we don’t have a
0
0

or
±∞

±∞
?

I am glad you asked!!! If we are in an indeterminate form such as 0×∞, ∞−∞, 00, 1∞, or ∞0, believe it
or not, we can use our favorite tool...ALGEBRA!!! Using algebra, we can make any of the 7 indeterminate

forms into
0
0

or
±∞

±∞
. I bet this is exactly the answer you were hoping for, but either way, let’s do an example

problem.

lim
x→0+

(xx)

= lim
x→0+

(ex ln(x))

=eu u = lim
x→0+

(x ln(x))

=eu u = lim
x→0+

(
ln(x)

1
x

)
Use L’Hospital’s Rule

=eu u = lim
x→0+

(
1
x

− 1
x2

)
=eu u =0

e0 = 1

In terms of the calculus, L’Hospital’s Rule is not very difficult, but the algebra can get pretty harry. Practice

is key for L’Hospital’s Rule. Just remember that L’Hospital’s rule can only be used when you are in
0
0

or
±∞

±∞
.

18 Optimization

Optimization is the process of figuring out how to get the most out of out of something. This would be like
minimizing cost to maximize profit, making machines more efficient or maximizing volume and minimizing
material. Using calculus, you might be able to see how we could do this. We know if we have a function that
represents what we want to find, we can take the derivative, set it equal to 0 and solve. Where the derivative
is 0, our function will have a minimum or a maximum or the optimal point.

29



As you might think, optimization uses more algebra than calculus. In terms of calculus, we are only
taking one derivative. Other than that, we have to make a function that represents what we want, and then
we have to solve for the zeros of the functions. Let’s look at a problem.

We want to construct a box whose base length is 3 times the base width. The material used to build the
top and bottom cost $10/ f t2 and the material used to build the sides cost $6/ f t2. If the box must have a
volume of 50 f t3 determine the minimum cost to build the box.

First, let’s draw a picture.

We know the volume for a box like this is V = lwh. We also know l = 3w and the volume must be 50. This
means our first equation we can make is

50 = 3w2h

We also need to remember that the question is asking for the cost of the box so that would mean we
would need a cost function (C). If we break down the cost of producing the box into the cost to produce
each side of the box it will be easier.

First we know we have a top and a bottom that are the same size, and specifically they are 3w2. Since
we have two of them our cost function needs to take that into account. This means the first term of our cost
function would be 2(3w2). In the cost function we obviously need cost, and the cost for the base material is
$10/ f t2. This means so far our cost function is

C = 2(3w2)(10)

We know we have two different sized sides, and we have two of each of them. The first side would be
wh. Remember we have two of them, and the material for the sides costs $6/ f t2 this means C = 2(wh)(6).
Now our cost function is

C = 2(3w2)(10)+2(wh)(6)

The second type of side is modeled by the expression lh = 3wh, and like the other side, the cost for the
material is $6/ f t2. From this we can say C = 2(3wh)(6), and our total cost function becomes

C = 2(3w2)(10)+2(wh)(6)+2(3wh)(6)

Let’s simplify this a bit.

C = 60w2 +36wh+12wh

C = 60w2 +48wh
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Since we want to find the minimum of the cost function, we would need to find C′ and set it equal to
0. The problem is that we have two variables, and that would make this a mess. Do you remember the first
equation we made? 50 = 3w2h. If we solve this for h, we can substitute into our cost function.

h =
50

3w2

If we substitute this into our cost function we get

C = 60w2 +48w
(

50
3w2

)
Simplifying this we get

C = 60w2 +
800
w

Now if we find C′ we get

C′ = 120w− 800
w2

At this point we want to find the zeros of the derivative
Using some algebra, we can say

C′ =
120w3−800

w2

If we let the numerator equal 0 we can find the zeros. Therefore we get w = 3
√

800
12 ≈ 1.8821 and w = 0.

Obviously in this problem the width can’t equal 0 so we can throw that out. Now we know w≈ 1.8821.

Remember we want the cost, so we can say

C(1.8821)≈ $637.60

As you can see, the calculus is the easy part of this problem. Remember to keep in mind what you want
to solve for. In this problem, we wanted cost not the dimensions of the box.

19 Antiderivatives

Just like in elementary school when we all learned subtraction was the inverse of addition, or division was
the opposite of multiplication, in Calculus, we have derivatives, but what if we want to go the opposite way?
As we know derivatives follow the general form f (x) = xn ⇒ f ′(x) = nxn−1, but what if we started with
f ′(x) = nxn−1, how can we find f (x)? Can we find f (x)? The answer is YES! We can find f (x), but it isn’t
“perfect.” We call this “reverse” version antiderivatives.

To find f (x), we start with f ′(x) = nxn−1. Well, what do we do when we take a derivative?

1. Multiply by the function by the exponent

2. Subtract 1 from the exponent

What would be the opposite of this? (Remember when you solve an equation like x2 + 3 = 7 you reverse
your operations, thus, you would subtract first.)
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1. Add 1 to your exponent

2. Divide by the new exponent (or multiply by the reciprocal of the new exponent)

Therefore, to find f (x), if f ′(x) = nxx−1, we add one to the exponent, and thus get nxn, and then we divide
by the new exponent (or multiply by the reciprocal of the new exponent). By doing that, we get f (x) =
1
n nxn = xn.

Now let’s use numbers!!!
f ′(x) = 7x6⇒ f (x) = 1

7 7x7 = x7

f ′(x) = 24x9⇒ f (x) = 1
10 24x10 = 24

10 x10

Do you remember when I said, “We can find f (x), but it isn’t perfect”? Let me give you a general idea
of what I meant by that. What happens when we know f (x) = x2 + 1? Well, we know f ′(x) = 2x. Now
let’s go backwards. If we are given f ′(x) = 2x, we can solve for the antiderivative and say f (x) = x2, but it
doesn’t; we know that. We know f (x) = x2 +1. This is were our antiderivatives struggle. It doesn’t matter
if f (x) = x2 +1, or if f (x) = x2 +100, our derivative will be f ′(x) = 2x, and thus our antiderivative will be
x2. How can we fix this problem?

What if when we find our antiderivative, we do this: f ′(x) = nxn−1; f (x) = 1
n nxn +C where C is just

some random number we don’t know (an arbitrary constant). Let’s go back to our f (x) = x2 +1 example.

As we know, f ′(x) = 2x, and our antiderivative is f (x) = x2. Now if we take our antiderivative, and add
C we get f (x) = x2 +C. Now if we pick the ”right” number for C, we get f (x) = x2 +1.

HOLD UP THOUGH!!!!!
what about f (x) = x2 +100? Does our antiderivative, ”x2 +C,” work? YOU BET IT WILL!!! All we have
to do is say C = 100.

I know math can get a little boring, but why do we just have to add C? We don’t!!! We can add anything

we want thus, “x2+ ” is perfectly acceptable as long as it is clear that is some arbitrary constant.

Now, if we keep going, and take the antiderivative of our antiderivative (x2 +C), we get 1
3 x3 + 1

1Cx+D.
This comes from the fact that C =Cx0. We still need our arbitrary constant, but C was already used, thus we
used D.

Sometimes, we have the information to solve for C (or D,E,...). Say we are given f ′(x) = 1+3
√

x and
f (1) = 0. We have enough information to solve for C!
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f ′(x) =1+3
√

x = 1+3x
1
2

f (x) =x+
3
2

3x
3
2 +C

general antiderivative⇒ f (x) =x+
9
2

x
3
2 +C

Because f (1) = 0⇒ 0 =1+
9
2
(1

3
2 )+C

C =− 11
2

f (x) = x+
9
2

x
3
2 − 11

2
Antiderivatives also work for trigonometry. Just like the derivative of sinx = cosx, the antiderivative of

cosx = sinx.

20 Area under a curve and Riemann Sums

Have you ever thought about the area under a graph? I hadn’t before I took calculus. However, some people
did, and they explored and discovered some really cool things. Area is a very fundamental concept in math.
You first discovered area in elementary school, and one of the first formulas you learned was the area of a
rectangle (A = lw). As it turns out rectangles work well to give us a rough estimate of the area under a curve.
Let’s look at how that works.

Let’s look at the graph f (x) = x2

First off, we have to know how far to go. Let’s start on the interval [0,2]. If we are going to add up the
area of rectangles, we should probably decide how many rectangles we want to use. We should start with 2.
As we know, Arect = lw this means we need a length and a width. How can we define these dimensions?

The width is easy. We just need to divide the length of our interval by the number of rectangles we want
to use. This means on the interval [a,b], w = b−a

n where n is the number of rectangles we want. We like to
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call the width ∆x in calculus because it is the change on the x-axis. This means

∆x =
b−a

n

The length of our rectangles (since we are going up and down let’s call it height) can be defined in a few
ways.

Assume f (x) is a function and we are on [a,b]

1. Left-endpoint Rule. We can use what are called left-endpoints to get the heights of our rectangles.
If we think about the first rectangle, our x-coordinates will be at x = a and x = a+∆x. If we base the
height off the leftmost point of the rectangle, the height of the first rectangle would be f (a).

Similarly, the second rectangle would be at x-coordinates x= a+∆x and x= a+2∆x. On this rectangle
our left-endpoint rule tells us our height is f (a+∆x).

2. Right-endpoint Rule. We can use what are called right-endpoints to get the heights of our rectangles.
If we think about the first rectangle, our x-coordinates will be at x = a and x = a+∆x. If we base the
height off the rightmost point of the rectangle, the height of the first rectangle would be f (a+∆x).

Similarly, the second rectangle would be at x-coordinates x= a+∆x and x= a+2∆x. On this rectangle
our right-endpoint rule tells us our height is f (a+2∆x).

3. Midpoint Rule. We can use what are called midpoints to get the heights of our rectangles. If we think
about the first rectangle, our x-coordinates will be at x = a and x = a+∆x. We can find the midpoint
using this formula: m = (a+∆x)−a

2 = ∆x
2 If we base the height off the midpoint of the rectangle, the

height of the first rectangle would be f (∆x
2 ).

Similarly, the second rectangle would be at x-coordinates x = a+∆x and x = a+ 2∆x. To find the
midpoint of this rectangle do the following: m = (a+∆x)+ ∆x

2 . On this rectangle our midpoint rule
tells us our height is f ((a+∆x)+ ∆x

2 ).

From these rules, let’s redefine our definition of the area of the rectangles to be Arect = ∆x f (c) where c is
the left or right-endpoint or the midpoint of the rectangle. Using this definition of area, we can say the area
under the curve or the Riemann Sum will follow the form

A = ∆x f (c1)+∆x f (c2)+ · · ·+∆x f (cn)

and if we factor out the ∆x from each term we get

A = ∆x
(

f (c1)+ f (c2)+ · · ·+ f (cn)
)

Let’s try doing our problem with each rule.

1. [2,0]

2. 2 rectangles

3. Left-endpoints

4. ∆x = 2−0
2 = 1
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5. c1 = 0, c2 = 1, f (c1) = 0, f (c2) = 1

6. 1(0+1)=1

The awesome thing about adding up rectangles is that the more rectangles we have, the better our estimate
is. Another great things is that this process is linear in the sense that we do everything the same way each
time.
Since we are just adding up terms based on a given process, we can use summation notation.

n

∑
i=0

f (ci)∆x

Applying this to f (x) = x2 for 10 rectangles on the interval [0,2], using left-endpoints, we do this:

∆x =
2
10

, ci = i∆x where f (ci) is the height of the rectangle.

9

∑
i=0

((
2i
10

)2( 2
10

))
= 2.28

Taking this one step further, we can take a limit as n approaches infinity.

lim
n→∞

n

∑
i=0

f (ci)∆x

This will make the rectangles infinitely thin making our approximation the exact answer!! To do this with
f (x) = x2, [0,2] we would do the following:

lim
n→∞

n

∑
i=0

((
2i
n

)2(2
n

))

For the purposes of this class you will not actually need to solve this limit, but you will need to know how
to set it up.

lim
n→∞

n

∑
i=0

((
2i
n

)2(2
n

))
=

2∫
0

x2dx = 2
2
3

The only difference between left-endpoints and right endpoints is that we will start i at 1 instead of 0
and end at i = 10 instead of 9. This means the height of our first rectangle will be f (∆x) instead of f (0).
Likewise, the height of our last rectangle will be f (∆x ·10) = f (2) instead of f (∆x ·9) or f (1.8).

So by using right-endpoints we get

10

∑
i=1

((
2i
10

)2( 2
10

))
= 3.08

Taking this one step further, we can take a limit as n approaches infinity.

lim
n→∞

n

∑
i=1

f (ci)∆x
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This will make the rectangles infinitely thin making our approximation the exact answer!! To do this with
f (x) = x2, [0,2] we would do the following:

lim
n→∞

n

∑
i=1

((
2i
n

)2(2
n

))
For the purposes of this class you will not actually need to solve this limit, but you will need to know how
to set it up.

lim
n→∞

n

∑
i=1

((
2i
n

)2(2
n

))
=

2∫
0

x2dx = 2
2
3

Midpoints are a little more tricky to find a formula for ci. Using the same guides as before ([0,2],
f (x) = x2), ci will be the following:

ci = (i−1)∆x+
∆x
2

=
2(i−1)

10
+

2
20

Thus we have
9

∑
i=0

(
2(i−1)

10
+

2
20

)2 2
10

= 2.66

Taking this one step further, we can take a limit as n approaches infinity.

lim
n→∞

n

∑
i=0

f (ci)∆x

This will make the rectangles infinitely thin making our approximation the exact answer!! To do this with
f (x) = x2, [0,2] we would do the following:

lim
n→∞

n

∑
i=0

((
2(i−1)

n
+

2
2n

)2(2
n

))
For the purposes of this class you will not actually need to solve this limit, but you will need to know how
to set it up.

lim
n→∞

n

∑
i=0

((
2(i−1)

n
+

2
2n

)2(2
n

))
=

2∫
0

x2dx = 2
2
3

As you look through this you are seeing a big stretched out “S”. This is the symbol for an integral. When
you take an integral (which we will talk about more later), you are finding the limit as n goes to infinity of
our Riemann SUM...thus the stretched out “S” stands for sum.

21 Definite integrals and the Fundamental Theorem of Calculus

If you remember in the last section, we took the limit as the width of the rectangles went to 0, and this turned

our sum of areas into an integral. We specifically had
2∫
0

x2dx = 2 2
3 . How does that work? What does that

mean?
In calculus we have a lot of theorems, but the most important one is the “Fundamental Theorem of

Calculus” (FTC). It kinda sounds important doesn’t it? The FTC has two parts; let’s look at part 1.
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FTC Pt. 1:
If f is a continuous function on [a,b] and F is any antiderivative of f , then∫ b

a
f (x)dx = F(b)−F(a).

With this theorem, we can evaluate
2∫
0

x2dx. First, we need an antiderivative of f (x) = x2 which is F(x) =

x3

3
+C. Now we evaluate F(b)−F(a). This is notated as

x3

3
+C
∣∣∣2
0
. F(2)−F(0) =

8
3
+C−

(
0
3
+C
)
=

8
3
= 2 2

3 . Therefore, ∫ 2

0
x2dx = 2

2
3

Did you notice how the +C and the−C canceled out? That’s why the theorem says “F(x) is ANY antideriv-
itive of f (x).”

Now that we understand part 1 of the FTC, we can move on to part 2.

FTC Pt. 2:
If f is a continuous function on the open interval I containing the point a, then the function

x∫
a

f (t)dt is

differentiable on I and for all x in I,
d
dx

∫ x

a
f (t)dt = f (x).

I know that probably went over your head, but that is totally okay. Basically, all this theorem is saying is
that the derivative of the integral is the function, or that they are opposite operations just like multiplication
and division. That is huge though because that connects derivatives and integrals. If we do one with numbers,
it will look like this:

d
dx

∫ x

a
t2 +4t +5 dt = x2 +4x+5

22 U-substitution

When taking integrals, u-substitution gives us the ability to undo chain rule. When we have an integral in

the form
∫

f ′(x)g( f (x))dx we can choose a u = f (x) so
du
dx

= f ′(x) (derivative of u with respect to x). Then
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we can use
du
dx

as a fraction and get
du

f ′(x)
= dx. At this point we substitute and use some algebra to cancel,

and we get
∫

g(u)du, and this is an integral we can do.
So what does that mean with numbers??? ¨̂∫ 1

0
xcos(x2)dx

Let u = x2, this means du
dx = 2x which means

du
2x

= dx
Thus, we can plug in our variables and say∫ 2

0
xcos(u)

du
2x

=
1
2

∫ 2

0
cos(u)du

There is something different here. The bounds of our integral changed. Why is that?

The bounds changed because our variable changed. u literally is 2x2. This means that we need to change
our bounds according to our variable u. Thus for our new bounds we will plug in our old bounds as x in
u(x). This means u(0) = (0)2 = 0 and u(1) = 2(1)2 = 2, or 0 and 2.

2∫
0

cos(u) = sin(u)
∣∣∣∣2
0
= cos(1)− cos(0) = cos(1)−1

Let’s try one more!!!

1∫
0

3x2

(x3 +3)2 dx

Let u = x3 +3, and thus du
dx = 3x2, and

du
3x2 = dx

Thus we can say (notice the bounds): ∫ 4

3

(
3x2

u2

)(
du
3x2

)

=
∫ 4

3

1
u2 du =−1

u

∣∣∣∣4
3
=−1

4
+

1
3
=

1
12

23 Area between curves

Let’s say we have two functions f (x) and g(x), and we want to find the area between the two functions. as
we know by intuition, if we take the area under the upper graph (the integral), and subtract the area under
the lower graph (the integral), we can find the area between the two graphs.
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In this picture, there is an a and b. This makes sense because when we integrate, we need to integrate
from a to b. How do we find a and b though? If we look at the picture, a and b are the points where the
graphs cross, or in mathematical terms a and b are the x-coordinates when f (x) = g(x).

As we know we need to subtract the lower function from the upper function, but how do we know which
one is the upper, and which one is the lower function? Well, between a and b one of our graphs will always
be on top and one will always be on bottom. This means if we plug in a number c, where c is between a and
b, then either f (c)> g(c) or g(c)> f (c), and this will be true on the entire interval. Let’s try a problem!

f (x) =
√

x, g(x) = x2

First find a and b.

√
x = x2

x =x4

0 =x4− x

x =0,1

Thus, a = 0 and b = 1
Let’s say c = .5 because a < .5 < 1

f (c)≈ .707, g(c) = .25⇒ f (x)> g(x)

Therefore, we can say the area between the curves is∫ 1

0

(
(
√

x)− (x2)
)

dx =
((

2
3

x
3
2

)
−
(

1
3

x3
))∣∣∣∣∣

1

0

=
1
3
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24 Volumes of Revolution

24.1 The Big Idea

The idea behind volumes of revolution is fairly simple. Have you ever taken a sparkler on the 4th of July,
and tried to write your name with the streaks of light? Well, that is exactly what we are doing here! We have
a function f (x), let’s say f (x) = x to make things simple, and let’s cut it off at x = 0 and x = 1. From here,
were are just going to spin our function really fast around the x-axis so that it leaves a streak of itself behind.

What is the shape of the function’s streak?
If you think about it the streak will be in the shape of a cone with a height of 1, and a radius of 1.

How can we find the volume of this shape?

Well, we know that the volume of a cone is
1
3

πr2h, and we know our radius and height are both 1, so we

can say V =
1
3

π .
What happens if we have a more complicated function that doesn’t give us a “happy” shape like a cone?

Well whatever shape we have, we can slice it into what we like to call “disks.” A disk is a slice straight slice
through our shape, and each slice will have a uniform thickness which we will label ∆x. These disks will
make right cylinders of which, we can find the volume by using the volume of a cylinder formula which is
V = πr2h, and we know our r = f (x), and h = ∆x, thus our volume is V = π f (x)2∆x. Once we add all the
volumes of the cylinders together, we can approximate our volume.

In calculus, we always want better and better approximations to the point where they are perfect. We
normally do this by using a limit as something that we can control goes to 0. In this case, we can control ∆x,
so let’s write a limit.

V = lim
∆x→0

n

∑
i=1

π f (xi)
2
∆x =

b∫
a

A(x)dx

We know these are the same thing because the area of a circle is A = πr2, and by substitution, we can say
A = π f (x)2. All in all, the equation you need to know is

b∫
a

π f (x)2dx

Where a and b are the bounds, and in our case they were 0 and 1.
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Let’s finish our problem the calculus way. If we use the formula, we get the following:

1∫
0

πx2dx

=π

1∫
0

x2dx

=π

(
1
3

x3
∣∣∣1
0

)
=π

(
1
3
−0
)

=
1
3

π

24.2 What if we have 2 functions?

The point of the first section was the fact that we have to find a function that represents the area of a cross-
sectional slice of the solid. In the first example, we had a solid “disk-shaped” cross sectional area. However,
if we have 2 functions, g(x) = x2 and f (x) = x, and spin them around the x-axis, then our cross-sectional
area will be in the shape of a donut, or what we like to call a ”washer.” The shape of this cross-sectional area
has an outer radius, an inner radius, and a hole in the middle. To find the area of the cross-sectional slice,
we take the area of the outer function, and subtract the area created by the inner radius.

If we look at g(x) and f (x), we can see that g(x) is inner radius and f (x) is the outer. This means our
integral will be the following:

b∫
a

π((x)2− (x2)2)dx

Now to find a and b, we set g(x) = f (x), and solve for x. In this case we get a = 0, and b = 1.

1∫
0

π((x)2− (x2)2)dx =
2π

15

*Note that we are talking about are not distance so both g(x) and f (x) must be squared and
multiplied by π . Thus

∫ b
a π( f (x)−g(x))2dx will not give you the right answer.

24.3 What if we don’t spin it around the x-axis?

So far we have found out that all we have to do is write an equation for the area of the area of a cross-section,
and take the integral of it. Well, if we aren’t spinning around the x-axis, we just have to write a different
equation.

Let’s say f (x) = x and g(x) = x2, and we will spin it around the line y = −1. The only change to our
problem is the fact that the radius increased by 1. Therefore, our equation will be∫

π((1+outside)2-(1+inside)2)dx.
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We know our a and b are still 0 and 1, thus,

V =

1∫
0

π((1+ x)2− (1+ x2)2)dx =
7π

15

24.4 Practice Problems

Find the volumes of the solids created by the given bounds. Calculate based on revolutions around the x and
y-axis, and about x =−1, and x = 1.

1. f (x) = 2
7 x+5, from x = 0 to x = 3

2. f (x) =
√

x, from x = 0 to x = 4

3. f (x) = x−3, from x = 1 to x = 3

4. f (x) = x3, g(x) = x2

5. f (x) = 0, g(x) = x−2, h(x) =
√

x

25 Work

25.1 What’s the Big Deal?

You have probably all covered work in a high school physics class at some point, and you know the equation
for it is Work=force × distance, and Force=mass × acceleration, and therefore W = mad. In high school
that works great, but in real life there are more things going on. Say you are pulling a bucket out of a well
with a rope. You know that the bucket has mass, but what about the rope? The rope has mass too! The thing
about the rope is that every time you pull it, you have to lift less and less of the rope the higher you lift the
bucket. Now you can see how calculus might be involved in work.

If you think about it, force will become a function of the mass, and your mass will vary depending on
the distance traveled. Let’s put some numbers on this now. Let’s say the rope has a mass of 0.5 kg/m, the
bucket has a mass of 3 kg, and the bucket is 10 m down. With these numbers, we can write an equation for
force.

Force f (x) = 9.8(.5(10− x)+3)

where x is the length of the rope, and 9.8 m/s2 is acceleration due to gravity.
We know W = f d, and d = ∆x so we can say

W = lim
n→∞

n

∑
i=1

f (xi)∆x =
b∫

a

f (x)xdx

We let a and b be our bounds, and in this case they will be 10 and 0, but how do we know which is a and
which is b?
As we know, the mass of our rope is going down the more we lift the bucket, and our mass equation has a
negative slope, so we know we need to let out a = 0, and our b = 10. Therefore,

10∫
0

(49−4.9x+29.4)xdx =
31850

3
joules
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25.2 Practice Problems

1. A force of, F(x) = x2cos(3x)+2, x is in meters, acts on an object. What is the work required to move
the object from x = 3 to x = 7?

2. A spring has a natural length of 18 inches and a force of 20 lbs is required to stretch and hold the
spring to a length of 24 inches. What is the work required to stretch the spring from a length of 21
inches to a length of 26 inches?

3. A cable that weighs 1
2 kg/meter is lifting a load of 150 kg that is initially at the bottom of a 50 meter

shaft. How much work is required to lift the load 1
4 of the way up the shaft?

26 Integration by Parts

26.1 The Formula

Integration by parts is another option you now have for turning an impossible integral into something you
can do. For a basic example, you can’t find

∫
xexdx. In general, it is really hard to find the antiderivative of

something in the form of
∫

u
dv
dx

dx. Any time we see something in this form, we will use a method called
integration by parts.

I am going to get straight to the point. The equation you need to know for integration by parts is the
following: ∫

u
dv
dx

dx = uv−
∫

v
du
dx

dx

Any time you do integration by parts, you will have to do these steps.

1. Choose a u and a
dv
dx

. Keep in mind that in the end you want a simpler integral so∫
v

du
dx

dx is simpler than
∫

u
dv
dx

dx

2. From your u and
dv
dx

find a
du
dx

and a v respectively.

3. Use the formula uv−
∫

v
du
dx

dx
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For our problem: ∫
xexdx

1. u = x,
dv
dx

= ex⇒ I chose these because I know when I find u′, 1 is simpler than x.

2.
du
dx

= 1, v = ex

3. xex−
∫

ex(1)dx = xex− ex +C or for any of you in Calc 1 last semester, xex− ex +

That’s literally all there is to it so go have fun on some practice problems.

27 Trigonometric Integrals

27.1 What is it?

Trigonometric integrals (trig ints) is the idea that you can use trig identities to re-write impossible integrals
into manageable functions. Trig identities are equations such as sin2 x+cos2 x = 1, that have been proven to
be true. In order to be able to do trig sub, you need to know the identities you can use. The following is a
non-extensive list, but it will get you started.

sin2
θ + cos2

θ = 1 cos2
θ =

1+ cos2θ

2

sin2
θ =

1− cos2θ

2
sin2θ = 2sinθ cosθ

cos2θ = cos2
θ − sin2

θ sec2
θ = tan2

θ +1

csc2
θ = 1+ cot2 θ

Using these identities, you will be able to re-write a crazy integral like∫
sin2(x)dx =

2x− sin(2x)
4

+C

Let’s try to do that!

27.2 How to do it.

27.2.1 Practice #1

Let’s solve the integral I showed above. ∫
sin2(x)dx

Just like integration by parts, our goal is to make things simpler. One thing we can do in this integral
is try to get rid of the exponent on the sine function. On of the identities that would work to do this is

sin2 x =
1− cos2x

2
. If we use this we get the following.
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∫ 1− cos2x
2

dx

Now we can split this up using algebra and linearity.

1
2

(∫
1dx−

∫
cos(2x)dx

)
These two integrals can now be solved with 2 methods we already know! Power rule and u-substitution. I
am only going to show the u-substitution.

∫
cos(2x)dx

u = 2x du =
1
2

dx

1
2

∫
cos(u)du

=
1
2

sinu

=
sin(2x)

2

Finishing the other parts of the integral, we get

1
2

(
x− sin(2x)

2

)

=
2x− sin2x

4
There we have it! that is the same answer we had before!

27.2.2 Practice #2

Let’s solve another one. ∫
tan6 xsec4 x dx

Remember we want to make this simpler, and we want to use our trig identities. One way we could do that
is split it into different factors. For example, tan6 xsec2 xsec2 x. From here, we could use sec2 x = tan2 x+1
to replace one of the sec2 x terms.

=
∫

tan6 xsec2 xsec2 x dx

=
∫

tan6 x(1+ tan2 x)sec2 x dx
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From here, you may be able to recognize that we can use a u-substitution if we let u = tanx. This means
du = sec2 x dx.

=
∫

u6(1+u2) du

=
∫
(u6 +u8) du

=
1
7

u7 +
1
9

u9 +C

=
1
7

tan7 x+
1
9

tan9 x+C

27.3 Notes

1. In your book on pg. 481, there is a strategy to solve
∫

sinm xcosm x dx.

2. On pg. 482 there are strategies for
∫

tanm xsecm x dx

3. There is a few antiderivative formulas:

(a)
∫

tanx dx = ln |secx|+C

(b)
∫

secx dx = ln |secx+ tanx|+C

4. There are 3 more identities for the following:

(a)
∫

sinAxcosBx dx =
∫ 1

2 [sin(Ax−Bx)+ sin(Ax−Bx)] dx

(b)
∫

sinAxsinBx dx =
∫ 1

2 [cos(Ax−Bx)− cos(Ax+Bx)] dx

(c)
∫

cosAxcosBx dx =
∫ 1

2 [cos(Ax−Bx)+ cos(Ax+Bx)] dx

5. Overall, trig ints are not the easiest thing, but with practice, and recognizing patterns, you will be
successful.

27.4 Practice Problems

Find the integral.

1.
∫

sin3 xcos4 x dx

2.
∫

sin5 x dx

3.
∫

sin2 xcos4 x dx

4.
∫

sin3 xcos5 x

5.
∫

cos2 x tanx dx

6.
∫

ex sec3 ex dx

28 Trigonometric Substitution

28.1 The Big Idea

Trigonometric substitution (trig sub) is a very useful method to solve integrals. If we think of a right triangle,
and how we use Pythagorean’s Theorem, we can see that we can get the following forms.

1. x2 +b2 = a2⇒
√

a2− x2 = b
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2. a2 + x2 = c2⇒
√

a2 + x2 = c

3. b2 +a2 = x2⇒
√

x2−a2 = b

I am not going to show the algebra that goes into all of these, but the big idea is there. Just like the
trig integrals where we were using some identities, these will work in the same way. It is really hard, and
actually impossible to find

∫ √
9+ x2 dx, but using the above substitutions, we can!

28.2 Let’s try it!

28.2.1 Practice #1

Let’s solve the integral we looked at above. ∫ √
9+ x2 dx

Using the substitution for x we have above, we get

=
∫ √

9+(3tanx)2dx

Now we have a problem, we have a dx, and we need a dθ . By our table, we know dx = asec2 θ dθ . This
means we can say

=
∫

3sec2
θ

√
9+9tan2 θ dθ

If we look inside the radical, 9+9tan2 θ = 9(1+ tan2 θ . That looks an awful lot lie the identity we have for
sec2 θ so let’s make that substitution.

=
∫

3sec2
θ

√
9sec2 θ dθ

We now have some obvious algebra.

= 9
∫

sec3
θ dθ

You guys can do this integral. At the end, if you substitute to return back to x’s, we get

9 ln
(∣∣∣√x2 +9+ x

∣∣∣)+ x
√

x2 +9

2
+C
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29 Numerical Integration

29.1 Don’t freak out yet!

I know numerical integration sounds terrible, and especially after what you poor humans have been going
through in this class, but I promise it isn’t. Do you remember when we first started looking at integrals, and
we used Riemann sums and rectangles to find the area under a curve? We had the left, right and midpoint
rules, right? Well, numerical integration is the same idea, except we are going to use trapezoids. This is
called the Trapezoid Rule.

If we are going to add up the area of trapezoids, we should probably know the equation for the area of a
trapezoid.

Atrap =
B1 +B2

2
h

Where B1 and B2 are the bases of the trapezoid and h is the height (in our cases, h = ∆x, and B1 and B2 will

be f (xn) and f (xn+1)). Remember from calc 1 that ∆x =
b−a

N
where N is the number of trapezoids we

have. Let’s do a simple example!

29.1.1 Example

Let f (x) = x2

On the interval [0,10]

a) N = 5

Our first step should be identifying ∆x.

∆x =
10−0

5
= 2, and thus xi = 0,2,4,6,8,10

Let’s set up what our formula will look like quick.

T5 =
1
2

∆x( f (x0)+ f (x1)+ f (x1)+ f (x2)+ f (x2)+ f (x3)+ f (x3)+ f (x4))

or we could say

T5 =
1
2

∆x( f (x0)+2 f (x1)+2 f (x2)+2 f (x3)+ f (x4))

This formula will work for all intervals of N trapezoids and values of xi.

TN =
1
2

∆x( f (x0)+2 f (x1)+ · · ·+2 f (xN−1)+ f (xN ))

Using this formula we get the following:

T5 =
1
2
(2)
(

0+2(4)+2(16)+2(36)+2(64)+100
)
= 340
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b) N = 20

At this point, 20 values is going to take a lot of calculations, and that just isn’t fun (I thought 5 was bad
enough). Let’s set up a summation (∑) to make this easier.

The formula for this summation is going to be the following:

1
2

∆x

(
f (x0)+2

N−1

∑
i=1

(
f (∆x · i

)
+ f (xN )

)
If we use this formula, we will get this:

1
2
· 1

2

(
02 +2

19

∑
i=1

((
i
2

)2
)
+102

)
=

2670
8

= 333.75

c) N = 1000
1
2
· 1

100

(
02 +2

999

∑
i=1

((
i

100

)2
)
+102

)
= 333.335

d) ∫ 10

0
x2 = 333

1
3

29.1.2 Note

1. The trapezoid rule is the average of the Left-endpoint (LN ) and Right-endpoint (RN) approximations.

Thus, TN =
1
2
(LN +RN ).

2. The error in our estimation is given by this theorem:

If f ′′ exists and is continuous, find a K2 such that | f ′′(x)| ≤ K2 for every x in [a,b] (in other words, K2
is the maximum value of | f ′′(x)|). Then,

Error (TN )≤
K2(b−a)3

12N2

So for our problem f ′′ = 2. Thus, K2 = 2. This means

Error (T1000)≤
2(10)3

12(1000)2 = 0.00016̄

29.2 Midpoint Rule

Just as a quick review, we also have out good old midpoint rule from last semester. The midpoint just uses
rectangles, and the formula looks like this:

MN = ∆x( f (c1)+ f (c2)+ · · ·+ f (cN−1)+ f (cN )) .

Where c j is the midpoint of [x j−1,x j]
The error in the midpoint rule is given by this theorem:
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If f ′′ exists and is continuous, find a K2 such that | f ′′(x)| ≤ K2 for every x in [a,b] (in other words, K2 is
the maximum value of | f ′′(x)|). Then,

Error (TN )≤
K2(b−a)3

24N2

29.3 Simpson’s Rule

Simpson’s rule is another way to estimate area. Simpson’s rule uses parabolas to estimate the area under the
curve. The requirement for Simpson’s rule is that N must be even. The formula for Simpson’s rule is the
following:

SN =
1
3

∆x
(

f (x0)+4 f (x1)+2 f (x2)+ · · ·+4 f (xN−3)+2 f (xN−2)+4 f (xN−1)+ f (xN )
)

To find the error in Simpson’s Rule, we use this theorem.
If f (4) exists and is continuous, find a K4 such that | f (4)(x)| ≤ K4 for every x in [a,b] (in other words, K4

is the maximum value of | f (4)(x)|). Then,

Error (TN )≤
K4(b−a)5

180N4

30 Improper Integrals

Improper integrals are a special kind of integral where the function either has a point where it is undefined
on the interval [a,b] (i.e. hole in the graph or an asymptote), or the interval you are integrating on is one of
the following: [−∞,b], [a,∞], or [−∞,∞]. Overall, indefinite integrals are no worse than any normal integral.
All you have to do is split up the integral at the problem point. It will be easier to see a example problem.

30.1 Example ∫
∞

1

1
x2 dx

In order to take this integral, we need to look for holes and asymptotes in 1
x2 on the interval [1,∞]. We know

we have an asymptote as x→ ∞, and thus we have a problem. Watch how we can fix that problem.
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=−1
x

∣∣∣∣∣
b

1

=

(
lim
b→∞

−1
b

)
+1

= 0+1 = 1

Basically what we did was take the problem point, and take the limit as the antiderivative goes to that
x-value. Since the limit was 0, we can plug in 0 to find the definite integral. We call improper integrals
CONVERGENT if we get a finite number as our answer once we take our limits. Now let’s tweak our
bounds. ∫

∞

0

1
x2 dx

We know we have an asymptote at x = 0, and as x→ ∞ we have a problem. So let’s do this one.

=−1
x

∣∣∣∣∣
∞

0

=

(
lim
b→∞

−1
b

)
+

(
lim
x→0
−1

x

)
= 0−∞ =−∞

Since we didn’t get a finite number, we call this improper integral DIVERGENT.

30.2 Think about it

Instead of using number problems, I am going to give you guys a few more examples but generalized (using
letters instead of numbers). Read slow, and think as you read. These ideas will save you time in the future.

1. Let c be in [a,b], and F be the antiderivative of f . If lim
x→c

f (x) =±∞, then

∫ b

a
f (x)dx =

(
F(b)− (lim

x→c
F(x)

)
+
(

lim
x→c

f (x)−F(a)
)
.

2. Let a > 0, then ∫ a

0

dx
xp =


a1−p

1− p
if p < 1

diverges if p≥ 1
.

3. Let f (x) and g(x) be functions so that 0≤ g(x)≤ f (x) for every x≥ a. If

• ∫
∞

a
f (x)dx converges, then

∫
∞

a
g(x)dx also converges.

• ∫
∞

a
g(x)dx diverges, then

∫
∞

a
f (x)dx also diverges.
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31 Arc Length

Arc length is not too difficult of a concept. Like all other concepts in calculus we begin by estimating the
the length by adding up a bunch of values that are easy to work with. For arc length, we start by using the
distance formula (D =

√
(x2− x1)2 +(y2− y1)2) to find how far away 2 points are on the same curve.

As we make the distance between the points closer, we will get a better and better approximation. The
summation formula for this would be

N−1

∑
n=0

√
∆x2 +

(
f (xn+1)− f (xn)

)2

If you remember the mean value theorem, we can say there is a c in (a,b) so that f ′(c) =
f (b)− f (a)

b−a
. So

using this fact, we can say
N−1

∑
n=0

√
∆x2 +

(
f ′(cn)∆x

)2
.

Then by algebra we get
N−1

∑
n=0

√
∆x2 +∆x2

(
f ′(cn)

)2
.

Then if we factor,
N−1

∑
n=0

√
∆x2
(

1+ f ′(cn)
)2

.

This can be written as
N−1

∑
n=0

√
1+
(

f ′(cn)
)2

∆x.

Now if we take the limit as ∆x→ 0, we get∫ b

a

√
1+
(

f ′(x)
)2dx

This formula is fairly straight forward to use. Generally, once you set up the integral you will want to use a
calculator or computer to approximate the value.

32 Sequences

Sequences and series are the last “big” topic in calculus. If you remember, we had limits, derivatives and
integrals. Some of you might have heard about sequences, or used sequences before. I personally remember

52



in third or fourth grade, when we had to figure out what numbers came next. We would be given something
like 1, 3, 5, 7, 9..., and we would have to say “11” is the next number. This is all that sequences are. In
this class, we will get something like an = 2n+ 1, where n is in (this symbol means “in” ∈) the integers
(Z= {1,2,3 . . .}). This would mean a0 = 1, a2 = 3, a3 = 5 and so on.

A list of numbers that can be created by a rule (a function) over a given index is a sequence. In other
words, the general term an can be defined by the function f (n) where n is in some defined set.
· Each number, an, is called a term.

This means in or simple example,

1. general term = an = f (n) = 2n+1

2. n ∈ Z

3. a0 = 1, a2 = 3, a3 = 5 are three terms of our sequence.

The following are also sequences.

General Term Domain Sequence

an = 1− 1
n n ∈ N 0, 1

2 ,
2
3 ,

3
4 ,

4
5 , . . .

an = (−1)nn n ∈ {0,N} 0, -1, 2, -3, 4,. . .

bn =
364.5n2

n2−4 n ∈ N, n≥ 3 656.1, 486, 433.9, 410.1, 396.9, . . .

We will also have what are called “recursive” sequences. A recursive sequence is a sequence where we
use previous terms to solve for the next one. For example, the Fibonacci Sequence (Pascal’s Triangle) can
be defined as an = an−1 +an−2 with n > 2. This sequence would use the last 2 terms and add them together
to get the next one, and that is why it is recursive.

32.1 Convergence and Divergence

One thing that we like to know about sequences is if they converge or diverge. We talked about convergence
and divergence before with improper integrals, but let’s refresh our memory. If something CONVERGES,
then if we take the limit to infinity, we will go to one specific number. If something doesn’t converge, it
DIVERGES. There is two kinds of divergence. If the limit as we go to infinity doesn’t exist, we just diverge.
If the limit as we go to infinity goes to positive or negative infinity, then we diverge to infinity.

Here is a theorem we have for sequences:
If lim

x→∞
f (x) exists, then the sequence an = f (n) converges to the same limit:

lim
n→∞

an = lim
x→∞

f (x)

Here are some examples with actual sequences.
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1. an =
n+4
n+1

converges to 1 because

lim
n→∞

n+4
n+1

= lim
x→∞

x+4
x+1

= 1

2. an = cosn diverges because as we go to infinity the cosine function does not settle on one value.

lim
n→∞

cosn = lim
x→∞

cosx = Does Not Exist

3. an = 3(2n) diverges to infinity because

lim
n→∞

3(2n) = lim
x→∞

3(2x) = ∞

The last example above is the first special type of sequence we are going to look at. It is called a GEOMET-
RIC SEQUENCE. A geometric sequence is a sequence in the following form:

an = crn

where c is a constant and r is a rate. The special thing about this kind of sequence is this:

lim
n→∞

crn =


0 if 0≤ r ≤ 1
c if r = 1
∞ if r > 1

Here is another theorem for sequences. It is called squeeze theorem.
Let cn, an and bn be sequences such that for some number M, cn ≤ an ≤ bn for n > M and lim

n→∞
cn =

lim
n→∞

bn = L. Then lim
n→∞

an = L.
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Looking at that theorem, you might be wondering what that M is. I am going to give you a more
mathematical definition of convergence, and then it might make more sense.

We say a sequence (an) converges to a limit L, and we write

lim
n→∞

an = L or an→ L

if, for every ε > 0, there is a number M such that |an−L|< ε for all n > M.

This is basically saying that for any number that we give the name ε (it could be huge, but generally we
want it to be small), there is a number M where any n that we plug into our sequence an, the term we get
out will be closer to L than the distance distance between ε and L. In other words, |an−L| < |L− ε| when
n > M.

As you can see in the picture the dashed horizontal line is the limit of the sequence. ε is just a number with
which we get the horizontal lines y = L± ε . Since our sequence converges to L, there is a point M where
every an when n > M falls between y =±ε .

Now let’s try the algebra part of the definition. If we use the sequence from before, an =
n+4
n+1

, then by

the definition of convergence we can say this:∣∣∣∣n+4
n+1

−1
∣∣∣∣< ε

3
n+1

< ε

3 < ε(n+1)
3
ε
−1 < n

From this inequality, given any ε , we can find an M |an−L| < |L− ε| for every n > M. So if ε = .005,

M =
3
ε
−1 = 599. If we find a600 = 1.004992 which is closer to 1 than 1.005.

This is most everything about sequences, but there are a few more theorems in your book. Make sure
you take the time to go over them a bit (most of them are common sense).
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33 Series

A series is a sequence that we add all of the terms together. Basically we are going to add an infinite amount
of numbers together. The question we are interested in is if all of these terms add up to a number or do they
go to infinity. Do they converge or diverge? This might be a weird thing to think about, and you might be
asking, “How can an infinite amount of numbers add to get a finite number?”

Let’s look at the sequence an =
(1

2

)n. Looking at the first few terms and adding them up, we will get
1
2 +

1
4 +

1
16 = 0.8125. If we think about it, each consecutive term will get us only half way to 1, and if we

are only getting half way to one each time, we will never reach 1. This means our series will converge to 1.
Therefore,

∞

∑
n=1

(
1
2

)n

= 1

Just because a sequence converges, does not mean its series will, if we look at an =
1
n , the sequence will

converge to 0, but if we add the terms together, we will get 1
1 +

1
2 +

1
3 +

1
4 +

1
5 + . . . . You might be able to

see that this sum will keep growing even though it will grow very slowly. Therefore,

∞

∑
n=1

1
n
= Divergent.

This is great, but how can we know if a series converges when they are more complex? That is exactly
what you are going to learn over the next few weeks.

34 Geometric Series

A geometric series is the first kind of series we are going to look at.

A geometric series is an infinite sum of the form

a+ar+ar2 + · · ·=
∞

∑
n=0

arn.

The value of r is called the ratio.

In a geometric series, if |r|< 1 and n starts at 0, then the series converges to
a

1− r
. Thus, if |r|< 1,

∞

∑
n=0

arn =
a

1− r
.

However, if n starts at some number other than 0 (call it M), then if |r|< 1,

∞

∑
n=M

arn =
arM

1− r
.

If |r|> 1, then a geometric series diverges.
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35 Telescoping Series

A telescoping series is a series where a lot of the middle terms cancel out. If we look at

an =
1

n(n+1)
, we can use partial fractions and get an =

1
n
− 1

n+1
thus,

∞

∑
n=1

1
n(n+1)

=
∞

∑
n=1

1
n
− 1

n+1

If we plug in the first few terms, we get

1
1
− 1

2
+

1
2
− 1

3
+

1
3
− 1

4
=

1
1
−

�
��
1
2
+

�
��
1
2
−

�
��
1
3
+

�
��
1
3
− 1

4
= 1− 1

4
=

3
4

If we continue this, we will get

1
1
−

�
��
1
2
+

�
��
1
2
−

�
��
1
3
+ · · ·+

�
�
�1

N−1
−

�
��
1
N

+
�
��
1
N
− 1

N +1
= 1− 1

N +1

Since we know this, we can find this limit:

lim
N→∞

1− 1
N +1

= 1

There is no set rule for telescoping series, but if you recognize a series is telescoping then you can do this
process with it.

36 Integral Test

The integral test for series basically turns a series into an improper integral. There are a few requirements
that you have to check before you can use the integral test. Assume our series is

∞

∑
n=1

an.

Requirements for integral test:

1. Change your sequence an into a function f (n) (this doesn’t actually change anything except the do-
main is R instead of N).

2. f (n) must be continuous

3. f (n) must be positive

4. f (n) must be decreasing ( f ′(n)< 0)

5. f (n) must be integrable

If all of this criteria is met, then we can proceed with the integral test which is:
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1. If
∞∫
1

f (n) dn converges, then
∞

∑
n=1

an converges.

2. If
∫

∞

1 f (n)dn diverges, then
∞

∑
n=1

an diverges.

Let’s look at an example.
We have already seen this series before, and I told you that it was divergent. I explained it intuitively,

but in math that isn’t always good enough.
∞

∑
n=1

1
n

Assume f (n) =
1
n

, and let’s check the criteria from above

1. f (n) is continuous

2. f (n) is positive

3. f (n) is decreasing ( f ′(n) =
−1
n2 < 0)

4. f (n) is integrable

Therefore
∞

∑
n=1

1
n
=
∫

∞

1

1
n

dn = lnn
∣∣∣∞
1
= divergent

Thus
∞

∑
n=1

1
n

diverges. This series actually has a special name, “the harmonic series.”

37 Comparison Test

The comparison test is not too complicated. That however, does not mean it is easy to recognize or easy
to use all the time. I will say this one definitely takes some practice to use. I am going to state the exact
theorem for the comparison test because there are definitely some details.

Assume there exists M > 0 such that 0≤ an ≤ bn for every n≥M.

1. If
∞

∑
n=1

bn converges, then
∞

∑
n=1

an converges.

2. If
∞

∑
n=1

an diverges, then
∞

∑
n=1

bn diverges.

This theorem is saying that if you have a smaller series and larger series, if the larger converges, then
the smaller one converges.

Similarly, if you have a smaller series and larger series, if the smaller diverges, then the larger one
diverges.

What is all this stuff about M though? The M is saying that since the partial sum of the series is finite,
as long as one sequence is larger than the other past a certain, and they don’t keep switching, you are good
to compare. Here are 2 pictures.

58



Above is sinx and cosx. As you can see in this picture, there is no point M where every x ≥ M one
function is always bigger than the other. They will keep alternating positions.

These two functions are f (x) =
1√
x3x (orange), and g(x) =

1
3x (purple). As you can see, if we let M = 1, if

we can see that for every x≥ 1, g(x)≥ f (x). Thus we can compare the 2 series
∞

∑
n=1

fn and
∞

∑
n=1

gn.

Since
∞

∑
n=1

1
3n is a geometric series with an r < |1|, it converges. Since

∞

∑
n=1

fn ≤
∞

∑
n=1

gn.
∞

∑
n=1

fn converges.

Let’s pretend
∞

∑
n=1

gn diverged. This would mean we have no information about
∞

∑
n=1

fn because just be-

cause a bigger sequence diverges, doesn’t mean the smaller sequence has to diverge. Basically, if you want
to prove something converges, make a series that is bigger and show it converges. If you want to prove
something diverges, make a series that is smaller and show it diverges.

38 Alternating Series Test

An alternating series is named for how it alternates between positive and negative terms. An alternating
series will look something like these:

∞

∑
n=1

(−1)n(bn) or
∞

∑
n=1

(−1)n±1(bn).

Basically the difference between these series is that in the first one, the terms will be
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−b1 + b2− b3 + · · ·+(−1)nbn, and the second will be b1− b2 + b3 · · ·+(−1)n+1bn. The exponent on the
alternating part only changes which terms are positive and which are negative.

To deal with these kinds of series we have the alternating series test. Just like our other tests, this test

has some criteria we need to check. Assume our series is
∞

∑
n=1

(−1)nbn or
∞

∑
n=1

(−1)n±1bn.

1. bn must be decreasing (bn+1 < bn for all n≥ 1)

2. lim
n→∞

bn = 0

If we meet all of this criteria,
∞

∑
n=1

(−1)nbn and
∞

∑
n=1

(−1)n±1bn converge. Let’s look at the alternating harmonic

series
∞

∑
n=1

(−1)n 1
n

1.
1
n

is decreasing because if we let f (x) =
1
x

, then f ′ =− 1
x2 which will always be negative.

2. lim
n→∞

1
n
= 0.

Therefore, the alternating harmonic series converges.

39 Absolute and Conditional Convergence

When we talk about alternating series, sometimes we like to know if our sequence converges absolutely or

just conditionally. If an alternating series
∞

∑
n=1

(−1)nbn converges, then we can check to see if
∞

∑
n=1
|(−1)nbn|

(this series is equivalent to
∞

∑
n=1

bn) converges. If
∞

∑
n=1
|(−1)nbn| converges, then we can say the series is

absolutely convergent, if not, our series is conditionally convergent.
Let’s look at the following two series.

∞

∑
n=1

(−1)n 1
n

and
∞

∑
n=1

(−1)n 1
n2

By the alternating series test, both of these converge (check if you want to practice).
Now let’s see if they converge absolutely.

∞

∑
n=1

∣∣∣∣(−1)n 1
n

∣∣∣∣ and
∞

∑
n=1

∣∣∣∣(−1)n 1
n2

∣∣∣∣
We know we can rewrite these as

∞

∑
n=1

1
n

and
∞

∑
n=1

1
n2

These series are easy because the first is the harmonic series (divergent) and the second is a geometric series

where r = 1
2 (convergent). This means

∞

∑
n=1

(−1)n 1
n

is conditionally convergent and
∞

∑
n=1

(−1)n 1
n2 is absolutely

convergent.

60



40 Ratio Test

The ratio test is very helpful on series that contain factorials, exponential factors like n! or 3n. Assume our

series is
∞

∑
n=1

an. All we are going to do is first check that an > 0 for all n≥ 1, and second find lim
n→∞

an+1

an
= L.

1. If L < 1, the series converges.

2. If L > 1, the series diverges.

3. If L = 1 the test is inconclusive (do a different test).

Let’s see if
∞

∑
n=1

2n

n!
converges or diverges (let an =

2n

n!
).

By plugging in a few numbers, we can see that an is decreasing.
Now let’s find lim

n→∞

an+1

an

lim
n→∞

2n+1

(n+1)!
2n

n!

Using algebra we can rewrite this as

lim
n→∞

2
n+1

= 0

Therefore,
∞

∑
n=1

2n

n!
converges.

41 Root Test

The root test works best when you have exponential sequence like (an)
n. Algebraically, lim

n→∞
(an)

n =

lim
n→∞

n
√
(an)n = lim

n→∞
an = L.

1. If L < 1, the series converges.

2. If L > 1, the series diverges.

3. If = 1, the test is inconclusive.

Assume our series is
∞

∑
n=1

(
2n

3n−1

)n

lim
n→∞

(
2n

3n−1

)n

= lim
n→∞

n

√(
2n

3n−1

)n

= lim
n→∞

2n
3n−1

=
2
3

Since L =
2
3
< 1,

∞

∑
n=1

(
2n

3n−1

)n

converges.
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42 Summary of Convergence Tests

1. Divergence Test: If lim
n→∞

an 6= 0, then ∑an diverges.

2. Geometric Series: Let c 6= 0. If |r|< 1, then

∞

∑
n=0

crn = c+ cr+ cr2 + cr3 + · · ·= c
1− r

∞

∑
n=M

crM = c+ cr+ crM+1 + crM+2 + · · ·= crM

1− r

If |r| ≥ 1, then the geometric series diverges.

3. Telescoping Series: Case by case. Let ∑an be a telescoping series. Assume a1,a2, . . .an are the
first terms that don’t cancel, and bn is the form of the final terms that don’t cancel, then ∑an =
a1 +a2 + · · ·+an + lim

n→∞
bn.

4. Integral Test: Let an = f (n) where f is a positive, decreasing, and continuous function of x for x≥ 1.

i) If
∫

∞

1
f (x) converges, then

∞

∑
n=1

an converges.

ii) If
∫

∞

1
f (x) diverges, then

∞

∑
n=1

an diverges.

5. Assume there exists M > 0 such that 0≤ an ≤ bn for every n≥M.

i) If
∞

∑
n=1

bn converges, then
∞

∑
n=1

an converges.

ii) If
∞

∑
n=1

an diverges, then
∞

∑
n=1

bn diverges.

6. Limit Comparison Test: Let {an} and {bn} be positive sequences. Assume that the following limit
exists

L = lim
n→∞

an

bn

• If L > 0, then
∞

∑
n=1

an converges if and only if
∞

∑
n=1

bn converges.

• If L = ∞ and
∞

∑
n=1

an converges, then
∞

∑
n=1

bn converges.

• If L = 0 and
∞

∑
n=1

bn converges, then
∞

∑
n=1

an converges.
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7. Power Series (p-Series): The series
∞

∑
n=1

1
np converges if and only if p > 1.

8. Alternating Series Test: Assume that {bn} is a positive sequence that is decreasing and converges to
0:

b1 > b2 > b3 > · · ·> 0 and lim
n→∞

bn = 0

Then the following alternating series converges:

S =
∞

∑
n=1

(−1)n−1bn = b1−b2 +b3− . . .

Furthermore,
0 < S < b1.

9. Ratio Test: Assume the following limit exists:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
i) If ρ < 1, then ∑an converges absolutely.

ii) If ρ > 1, then ∑an diverges.

iii) If ρ = 1, then the test is inconclusive.

10. Root Test: Assume the following limit exists:

L = lim
n→∞

n
√
|an|

i) If L < 1, then ∑an converges absolutely.

ii) If L > 1, then ∑an diverges.

iii) If L = 1, then the test is inconclusive
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43 Power Series

The next kind of infinite series we are going to look at is called a power series.
A power series with center c (c is a constant) is written as

f (x) =
∞

∑
n=0

an(x− c)n

Like any other series we have been looking at, we want to know when it converges or diverges. Notice that
a power series is a FUNCTION of x this means for certain values of x, we could have a convergent series,
and for others we could have a divergent series.

If we think of the time when x = 0, we get this:

f (0) =
∞

∑
n=0

an(−c)n

This looks really similar to a geometric series (if you let an = c and −c = r) which is
∞

∑
n=0

crn. We know a

geometric series is convergent if |r| < 1 so we need to find all x values that make |x− c| < 1. We call this
the radius of convergence. We also know we can split |x− c|< 1 up into 1 < x− c < 1, and we would call
this the interval of convergence. Let’s look at an example.

∞

∑
n=0

xn

n ·5n

Looking at this power series, it looks like we should use the ratio test
(

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣) to see if it converges

or diverges (this is what you should do for EVERY power series). We still have an x though...what should
we do?

I am glad you noticed! At this point, we are going to leave it as x. Let’s see what happens.

lim
n→∞

∣∣∣∣∣∣
xn+1

(n+1)·5n+1

xn

n·5n

∣∣∣∣∣∣
Let’s multiply by the reciprocal and see what cancels.

lim
n→∞

∣∣∣∣∣ x��n+1

(n+1) ·5��n+1
· n ·�

�5n

��xn

∣∣∣∣∣
Let’s simplify now.

lim
n→∞

∣∣∣∣ x ·n
(n+1) ·5

∣∣∣∣
To find this limit, distribute the 5 in the denominator and let’s multiply our fraction by

(
1
n
1
n

)

lim
n→∞

∣∣∣∣∣ x ·n
5n+5

·

(
1
n
1
n

)∣∣∣∣∣
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= lim
n→∞

∣∣∣∣∣ x
5+ 1

n

∣∣∣∣∣
=
∣∣∣ x
5

∣∣∣= ρ

We know when we use the ratio test

• If ρ < 1, then ∑an converges absolutely.

• If ρ > 1, then ∑an diverges.

• If ρ = 1, then the test is inconclusive.

So let’s solve for x now.
−1 <

x
5
< 1

−5 < x < 5

This gives us a radius of convergence of |x|< R = 5, but this is not necessarily the interval of convergence.
As I just said, if ρ = 1, then the test is inconclusive. So that means we have to test x =±5 individually.
x = 5

∞

∑
n=0

5n

n ·5n =
∞

∑
n=0

1
n
⇒ harmonic series: divergent

x =−5
∞

∑
n=0

(−5)n

n ·5n =
∞

∑
n=0

(−1)n ·5
n

=
∞

∑
n=0

(−1)n

n
⇒ alternating harmonic series: convergent

This means out interval of convergence is −5≤ x < 5
The radius of convergence gives us the segment (c−R,c+R), and if x is in this segment then the series

absolutely converges. The interval of convergence can include the endpoints.
This is how you will find the interval of convergence for power series.

1. Use ratio test to find radius of convergence.

2. Test the endpoints to find the interval of convergence.

44 Differentiating Power Series

Remember power series are functions ( f (x) =
∞

∑
n=1

an(x− c)n). So what is stopping us from finding their

derivative? Let f (x) =
∞

∑
n=1

xn

n ·5n , and bn =
xn

n ·5n . How can we find f ′(x)? If we think about it, let’s see if

we find the first few terms of our series if that will help.

f (x) =
x
5
+

x2

50
+

x3

375
+ · · ·

To find f ′(x), we would have to find the derivative of each term.

f ′(x) =
1
5
+

x
25

+
x2

125
+ · · ·
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If we find
d
dx

bn, would that be the same thing? Let’s try.

d
dx

(
xn

n ·5n

)
Remember we are differentiating with respect to x which means we treat n as a constant.

d
dx

bn =
d
dx

(
xn

n ·5n

)
=

nxn−1

n ·5n =
xn−1

5n

Now let’s plug that back into our series.

∞

∑
n=1

d
dx

bn =
∞

∑
n=1

xn−1

5n

If we test our first few terms we will get the following:

1
5
+

x
25

+
x2

125
+ · · ·

. We know that’s f ′(x) when we went term by term so we can say

f ′(x) =
∞

∑
n=1

d
dx

bn =
∞

∑
n=1

xn−1

5n

In other words is isn’t hard to differentiate a power series.

f ′(x) =
∞

∑
n=1

d
dx

bn

45 Integrating Power Series

Whatever we differentiate, we can always integrate. If we let f (x) =
∞

∑
n=1

xn

n ·5n , and bn =
xn

n ·5n . Let’s find∫
f (x).

f (x) =
x
5
+

x2

50
+

x3

375
+ · · ·

To find
∫

f (x), we would have to find the integral of each term.

∫
f (x) =

x2

10
+

x3

150
+

x4

1500
+ · · ·

Let’s find
∫

bn dx and see if that works.

∫
bn dx =

∫ xn

n ·5n =
1

n+1
· xn+1

n ·5n +C =
xn+1

(n+1) ·n ·5n +C
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Now plug in
∫

bn dx into the series and put C out side our series.

∞

∑
n=1

∫
bn dx =

∞

∑
n=1

xn+1

(n+1) ·n ·5n

This gives us these first few terms:

C+
x2

10
+

x3

150
+

x4

1500
+ · · ·

We know that’s
∫

f ′(x) when we went term by term so we can say

∫
f (x) =

∞

∑
n=1

∫
bn =C+

∞

∑
n=1

xn+1

(n+1) ·n ·5n

In other words is isn’t hard to integrate a power series.∫
f (x) =C+

∞

∑
n=1

∫
bn

46 Power Series Representing a Function

Given a finite number of terms power series approximate a function. However if we find a infinite number
of terms, our power series becomes a function. Let’s look at tan−1x. We know d

dx tan−1 = 1
1+x2 . This means

if we can represent f (x) = 1
1+x2 with a power series, we can integrate and find a representation for tan−1 x.

Let’s look at the process to find a power series that can represent f (x) = 1
1+x2 .

We know a geometric series looks like
∞

∑
n=0

arn, and if |r|< 1, a geometric series converges to a
1−r . If we

let a = 1 and r =−x2, we get this:

f (x) =
∞

∑
n=0

(−x2)n =
∞

∑
n=0

(−1)n(x2)n =
∞

∑
n=0

∫
(−1)n(x2n)

Based on our a = 1 and r =−x2, if |x2|< 1 (which is the same as |x|< 1), our series will converge to
1

1+ x2

which is the derivative of tan−1x. This means if we integrate our power series, and solve for our constant,
we will get tan−1 x. Let’s try that. ∫

f (x) dx =
∞

∑
n=0

∫
(−1)n(x2n) dx

We can say this is
∞

∑
n=0

(−1)n x2n+1

2n+1

This will give us these first few terms:

C+ x− x3

3
+

x5

5
− x7

7
. . .
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As you can see I have placed my constant “C” at the beginning just because placing it at the “end” of a infinite
list of numbers just doesn’t work. now if we let x = 0, we will be left with tan−1(0) =C because every term
in our series has an x in the numerator, and thus all of them will be 0. Therefore, since tan−1(0) = 0, we
know C = 0. This means we can say

tan−1(x) =
∞

∑
n=0

(−1)n x2n+1

2n+1
.

Remember this series only converges when |x|< 1. The following is a picture of the series (red) versus the
function (blue)

As you can see, we can represent functions with power series, but we are limited by the interval of conver-
gence (in this case, −1 < x < 1).

Another important power series that represents a function is

ex =
∞

∑
n=0

xn

n!

The coolest part of this power series is that the radius of convergence is R = ∞ which means we can plug
in any x! If you want to, you can integrate or differentiate this power series, and you will see that once you
simplify, you will be back to the original series.

47 Special Power Series

There are 2 specific types of power series that are generally used to represent functions. They are Taylor
Series and Maclaurin Series.

A Taylor Series is a power series centered at a that follows this formula:
∞

∑
n=0

f (n)(a)
n!

(x−a)n

A Maclaurin Series is a Taylor Series that is centered at 0. A Maclaurin Series follows this formula:
∞

∑
n=0

f (n)(0)
n!

(x)n

Note that f (n)(x) is the nth derivative evaluated at x.
Let’s look at the Maclaurin Series in detail first.
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47.1 Maclaurin Series

Maclaurin Series are used a little more than Taylor Series. Let’s look at how to make a Maclaurin Series for
sinx.

Looking at the numerator, we need to find the nth derivative evaluated at 0.

f (0) = sin(0) = 0

f ′(0) = cos(0) = 1

f ′′(0) =−sin(0) = 0

f ′′′(0) =−cos(0) =−1

As we know, this pattern will repeat forever. The pattern we have going so far is 0, 1, 0, -1. If we think
about this pattern, it will mean that even term will have a numerator equal to 0, and therefore the term will
equal 0. This means we only have to focus on the odd terms. The non-zero terms alternate, and the first
non-zero term is positive, so when we plug in n = 0, we need to have a positive term come out. Let’s have
the numerator be (−1)n.

As we know, the even terms will all be 0 so we don’t want our series to give a number on even terms so
let’s make our denominator be (2n+ 1)!. We know this will only turn out odd number terms. Similarly, if
we raise x to the 2n+1 power, we will get only the odd terms (x1, x3, x5, . . . ). Putting all of this information
together, we will find the following Maclaurin Series:

sin(x) =
∞

∑
n=0

(−1)nx2n+1

(2n+1)!
.

The first few terms are as follows:

x− x3

3!
+

x5

5!
− x7

7!
+ . . .

As you can see this fits the information we had. All even terms are 0, and each odd term alternates positive
and negative starting as positive.

We can also find a Maclaurin Series for cos(x) using the same process. Let’s look at the derivatives
evaluated at 0.

f (0) = cos(0) = 1

f ′(0) =−sin(0) = 0

f ′′(0) =−cos(0) =−1

f ′′′(0) = sin(0) = 0

Now as we can see, odd terms will be 0 and the even terms will alternate from positive to negative. This
means our series will look like this:

cos(x) =
∞

∑
n=0

(−1)nx2n

(2n)!
.

The first few terms are as follows:

1− x2

2!
+

x4

4!
− x6

6!
+ . . .

Both of these series have a radius of convergence of R = ∞.

I also mentioned earlier that ex =
∞

∑
n=0

xn

n!
, and we get that again using the Maclaurin Series formula.
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47.2 Taylor Series

Looking at how a Maclaurin Series works, why would we ever need to center our series somewhere other
than 1? If you think for a long enough time, lnx is a function we need to center somewhere other than 0. If
you didn’t think of a function that we would have to center somewhere other than 0, what are some of the
problems with centering lnx at 0?

• lnx does not exist at 0

• None of the derivatives of lnx exist at 0 (even if one didn’t we would have a problem)

For these reasons, we would have to center our series somewhere the function and derivative exists. Let’s
center lnx at a = 1. The formula for a Taylor series is this:

∞

∑
n=0

f (n)(a)
n!

(x−a)n

We still need our derivatives evaluated at 1 now.

f (1) = ln(1)

f ′(1) = x−1 = 1

f ′′(1) =−x−2 =−1

f ′′′(1) = 1 ·2x−3 = 2

f (4)(1) = 1 ·2 ·3x−4 =−6

I don’t know about you, but I see a pattern forming here. I am seeing that f (n) = (−1)n−1(n−1)!(x−n) and
since x = 1, we can say f (n) = (−1)n−1(n−1)!. We can see that ln(1) doesn’t follow our formula so we will

say ln(1)+
∞

∑
n=1

an, but we also know ln(1) = 0 so we can actually leave it off. Let’s plug that into our Taylor

series formula.

ln(x) =
∞

∑
n=1

(−1)n−1(n−1)!
n!

(x−1)n

We can cancel our factorials and simplify to get this:

ln(x) =
∞

∑
n=1

(−1)n−1 (x−1)n

n
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