
IEEE TRANSACTIONS ON XXXXX, VOL. 0, NO. 0, DECEMBER 0 1

Blockchain Multiparty Computation Markets at
Scale

Charles Noyes

Abstract—We explore ways of allowing for the offloading of
computationally rigorous tasks from devices with slow logical
processors onto a network of anonymous peer-processors. Recent
advances in secret sharing schemes, decentralized consensus
mechanisms, and multiparty computation (MPC) protocols are
combined to create a P2P MPC market. Unlike other computa-
tional ”clouds”, ours is able to generically compute any arithmetic
circuit, providing a viable platform for processing on the semantic
web. Finally, we show that such a system works in a hostile
environment, that it scales well, and that it adapts very easily
to any future advances in the complexity theoretic cryptography
used. Specifically, we show that the feasibility of our system can
only improve, and is historically guaranteed to do so.

I. INTRODUCTION

CURRENTLY, computation is done locally in nearly all
cases. Sans dedicated high-performance distributed com-

putation scenarios, on-device logical processors are used to
do all necessary computation. There are a number reasons for
this. Foremost, there is simply a lack of an alternative. While
services like Google’s Cloud, Microsoft’s Azure, Amazon
Webservices, etc. allow for scalable distributed computation
in specific and perfectly-predefined scenarios, no platform for
generic ”cloud” evaluation of arithmetic circuits exists.

Consider the implications of such a system; it would be able
to sate small, networked devices’ needs for high-performance
processing power, allowing individual devices to tackle prob-
lems far larger than they are currently capable of. The rate
of iterative processor upgrades would greatly slowed, as the
expansion of device capability would no longer be conflated
with corresponding logical processor updates. In effect, it
would allow the burgeoning Internet of Things (IoT) to grow
at a much faster rate, with a lower barrier to market entry.

The main non-trivial problems that must be solved here
are assurances of security and scalability of the system. For
the former, because we envision a system that is simply
a cryptoeconomically-driven protocol, and not a service de-
pendent on a centralized authority, a scheme for distributed
consensus and trustless auditing must be designed. Neither
problem is particularly hard, at least not seemingly insur-
mountably so, on its own, but when working in tandem,
a behemoth results; scalability is trivial when security is
compromised, and vice versa. However, when we wish to
maintain verifiable security and absolute privacy, scalability
becomes elusive. Homomorphic and Somewhat-Homomorphic
Encryption (HE and SHE) schemes do not lend themselves to

C. Noyes is with Villa Park High School, Villa Park, CA, 92861 USA
e-mail: cnoyes@usc.edu.

Manuscript received December 00, 0000

speed, but to security. Likewise, fast scheduling algorithms
break down in the presence of adversaries - for example, one
investigated SHE scheme, Shamir’s [1], can only guarantee
correctness of multiplicative operations with O(n2) commu-
nications, because of the degree reduction step of the process.

II. RELATED WORK

The interaction of the above two requirements is where other
approaches break down. One of the better known ”Semantic
Web” projects is Ethereum[2], an offshoot of Bitcoin [3]
that allows for decentralized code execution - the caveat
being that intensive work is economically and computationally
infeasible, at best. The reason for this is a global execution
scheme; consensus is held through the execution of circuits
by all participants in the network, instead of having global
verification of a zero knowledge proof.

Perhaps the most closely related project, MIT’s Enigma [4],
actually addresses this problem, but still falls a few steps short
in its vision. While they draw on very similar ideas as we do
here, they are taken only to the extent of providing a platform
for private decentralized ”analysis” - the reasoning being that
truly fast decentralized computation is a much more ambitious
goal. We present a set of securely decentralizable schemes that
allow for that computation at scale, such that the power of our
network is not bounded by such restrictive constraints.

The most important prerequisite to an understanding of our
work is knowledge of the workings of Bitcoin and its deriva-
tive ’blockchain’ architectures. To summarize the body of very
recent work surrounding them, consider a blockchain to be a
canonically unchangeable decentralized ledger. Usually, both
to give the work expended by the miners of the chain value
and as its main purpose, a blockchain is used to store value
digitally. However, the uses are far greater.

III. OUR APPROACH

In order to accomplish the goals set forth we have con-
structed the cryptographic equivalent of a Panopticon. Our
system enables privacy of data, speed of execution (relative to
contemporary methodologies), and reversibility of results. The
first and last points lend themselves necessarily to security.

A. Secure Data Distribution

One of the core tenants of our system is the availability
of user data to computational entities. We accomplish this
with a distributed hash table (DHT) that is hosted by our
computational entities, to store the encrypted user data, and a

IEEE TRANSACTIONS ON XXXXX, VOL. 0, NO. 0, DECEMBER 0 2

Blockchain
Storage

DHT
Storage

Computation
Layer

Fig. 1. Storage Interactions

public ledger (commonly known as a blockchain), which stores
the data used to validate the machinations of the network.

Because of the way that blockchains are shared (all nodes
must hold all data at all times), they do not lend themselves to
large data networks. Because of this, only small proofs, like
cryptographic commitments and keys, are stored. Additionally,
generic currency features are supported, as it is easier to
integrate into a new cryptocurrency than to adapt to an existing
blockchain.

Conversely, distributed hash tables are very good at dis-
tributing large amounts of data to many different nodes. The
size of the network is thus not limited by the total amount of
data stored, as the amount that each node must store scales
inversely with the number of participants.

B. Secure Contract Execution

Our contract execution scheme is described in greater tech-
nical detail in the following sections. To give an overview,
computation is done in a modified decentralized fashion.
Small proofs included on the blockchain are used to ensure
correctness of off-chain computation, and Ethereum-like smart
contracts are able to be included on the blockchain proper.
These smart contracts are Turing-complete but have a cost
associated with each computational step in their execution. In
addition, they continue to live on the blockchain until they are
removed.

The meat of our system, the off-chain computational con-
tracts, are transient and only their proofs are included on
the blockchain. They are able to access both on-blockchain
and DHT storage, but are unable to modify the on-blockchain
storage associated with smart contracts.

IV. COMPUTATION

Here we describe our computational model in exact detail.
To begin, a brief overview of publicly verifiable secure mul-
tiparty computation (sMPC) is needed. Note that our actual
computational model is derived from Enigma’s [4]. We make
use of the same computational paradigms, but our network
model is directed much differently.

A. Private Computation

Two-party computations protocols were pioneered by Yao
in [5]. Yao proposed the millionaire problem, in which two
individuals wish to compare wealth without revealing exact
sums. This problem has since been generalized for n-party
cases, but because of the composition of elementary circuits a
solution to the millionaire problem (in the n-party case) is a
solution to sMPC. Yao proposed the use of garbled circuits [6],
but they do not scale. Secret sharing, based on threshold
cryptography, is a much more common and scalable solution.

Shamir introduced the idea of secret sharing using polyno-
mial secrets in [1]. These are known as threshold cryptosys-
tems, as they are defined by a ((t + 1, n))-threshold, where
n is the number of participants and t + 1 is the minimum
number of parties needed to decrypt a secret. t (or any of
its subsets) cannot learn anything about the secret. Shamir’s
secret sharing scheme (SSS) is an example of a scheme which
uses polynomial interpolation to allow for security under a
finite field. To share a secret k, a random polynomial P (x) of
degree t is selected

P (x) = atx
t + ...a0 (1)

a0 = s (2)

The shares are then given by evaluating P (x) over [1, n]
and distributing accordingly. Then, given any t + 1 shares,
P (x) is able to be determined via Lagrange interpolation and
our secret given by k = P (0). Multiplication by scalars and
additive homomorphism are supported locally simply by direct
operation. Given secrets s1, s2 and a scalar q,

q × s = Interpolate({q[s]i}i=t+1
i=0 (3)

s1 + s2 = Interpolate({[s1]i + [s2]i]})i=t+1
i=0 . (4)

Multiplication is significantly harder. While the addition
of two secrets of degree t does not change the degree of
the resulting secret, the multiplication of those secrets will
result in a polynomial of degree 2t. The degree reduction step
requires O(n2) communication.

So, we are left with a cryptosystem that allows for the
computation of arbitrary circuits, as additive and multiplicative
operations form any boolean circuit, on completely private
data.

Note that the referenced ’Interpolate’ is simply the oper-
ation

Pi(x) =

t+1∏
j 6= i

x− xj

xi − xj
, (5)

a general Lagrangian interpolation.

B. Speedy Computation

The above is excellent for securely private computation –
however, there are many cases in which perfect privacy is not
a concern, or in which a lack of privacy is overshadowed by
a want for speedier computation. We are able to satisfy this
need with a simpler protocol, that makes use of Ethereum’s
Turing-completeness. The basic scheme is very simple: data

IEEE TRANSACTIONS ON XXXXX, VOL. 0, NO. 0, DECEMBER 0 3

Pending
Answer

Submitted

Answer
Challenged

Waiting for
Resolution

On-Chain SPDZ
Checking

Needs
Resolution

On-Chain SPDZ
Completed

Resolving

Firm
Resolution

Soft
Resolution

Finalized

Finalize
Original Result

Answer
Unchallenged

Fig. 2. Secure Computation Validation

is committed to the DHT in an encrypted format, a request is
appended to the blockchain, a commitment to computation as
well as a deposit is made by a computational entity, the re-
quester puts up an agreed-upon deposit (perhaps influenced by
prior actions on the same public key), and the computational
entity begins its work after receiving a decryption key for the
data to be computed on.

Before getting into the details of result verification, there are
a few interesting features of this paradigm that are not present
in the securely-private model enumerated in the previous
section. For example, the computation does not have to be
done in predefined ”rounds,” the input data can be formatted
in any way, and the language used can be far more expansive.
Of course, the most obvious difference is that all computation
is done (from the perspective of the submitted) entirely locally.
There are no share-resharing or secret reconstructions steps,
and the computation does not have to be fitted into a branched
arithmetic circuit. Note that while the computation appears to
be local, it is really just airgapped from the network at large, as
a computational entity is free to do it on a locally distributed
system (assuming they are able to retain correct proofs).

Finally, after computation is complete and the result is
committed to and submitted by the computing entity, result
validation can begin. The result is codified onto the blockchain,
so it is always the first entity to finish that is awarded the
bounty if no conflicting answers are submitted. However, if
another computing entity is willing to back their stake on
the assumption that the original result was incorrect, and the
verification procedure outlined in Fig. d2 supports this, they
are awarded both the deposits of all malicious/incorrect entities
and the original bounty. Thus, it is obviously, in a game-
theoretic sense, in the best interest of computational entities
to be honest.

C. Verifiability

Ethereum is able to validate SPDZ proofs [7] on a chal-
lenge. This is one of the core innovations introduced by this
project. SPDZ are, essentially, computational proofs that are
significantly easier to create and audit than any other existing
system [8]. Some notation is needed to properly define the
protocol. Let n be the number of players and Fq the finite

field we do computations on. Each player Pi has a share
ai ∈ mathbbFq of a shared secret value a = a1 + ... + an.
This a is known as the fixed MAC key. Each player Pi also
has a secret key B1.
[x]x ∈ Fq is

[
·
]
-shared if Pi holds a tuple (xi, y(x)i) where

xi is an additive secret sharing of x, i.e. x = x1 + ... + xn,
and y(x)i) is an additive secret sharing of y(x) = ax.
[x]x ∈ Fq is

[[
·
]]

-shared if Pi holds a tuple (xi, y(x)i)
where xi is an additive secret sharing of x and ∀k ∈ [1, n] :
yk(x)i is an additive secret sharing of yk(x) = Bkx.

Next, there is both an online and offline phase. The offline
phase consists of the construction of raw material to be
passed to the online phase. Using [9], we are able to reuse
fixed MAC keys, reducing the computational complexity of
the initial calculations significantly. Additionally, we use the
results from [10] to make this scheme publicly auditable. Our
blockchain acts as the ’bulletin board’ described in the paper,
as each step’s proofs are pegged to the blockchain. This also
ensure we are able to be sure (in the securely-private model)
of which actor was malicious.

Lastly, we have need of a public auditor. This is a massive
problem for a decentralized sMPC system that uses SPDZ
proofs; however, we have the perfect system to do these audits.
Ethereum’s blockchain is Turing-complete and the auditing of
computations involves only very simple operations. Thus, we
are given the last key to the game-theoretic puzzle behind this
project.

V. RESULTS

We compared Pandora (both the secure and securely private
models) to two other open source implementations of sMPC
protocols. First, FairplayMP [11] is an academic project by
the Hebrew University of Jerusalem that uses garbled Boolean
circuits to securely compute functions on secret data in the n-
party case. VIFF [12] is an open source sMPC project that uses
arithmetic circuit evaluation, without a public board (in our
case the blockchain), and a variety of different optimization
techniques. Neither is optimized for speed or scalability, but
they are in fact the only two public sMPC projects we could
find.

For additive computations, we calculated very large terms of
the Fibonacci sequence. This tested our systems ability to deal
with large numbers, stateful computational rounds, and basic
scalar multiplication and summation. Both of our paradigms
outperformed FairplayMP and VIFF by large margins; our
secure model was between 2,000% and 4,000% faster than
other test projects (5 sigma confidence). Our securely private
model was marginally (2.8x, 5 sigma confidence) slower than
our secure model, however it was still significantly faster than
FairplayMP and VIFF (950% and 1600%, respectively, at six
sigma confidence).

Our securely private model is most comparable to Fair-
playMP and VIFF, because both utilize advance homomorphic
cryptosystems. We believe we saw such favorable results,
specifically for the additive step of our securely private model,
because our system doesnt require verification at each compu-
tational round. This trait also introduces per-round network

IEEE TRANSACTIONS ON XXXXX, VOL. 0, NO. 0, DECEMBER 0 4

communication complexity O(n2), whereas our system re-
quires no communication whatsoever to maintain security.

For multiplicative computations, we calculated very large
terms of the irrational number Pi via Chudnovskys algorithm.
This tested our systems ability to deal with extremely long dec-
imal values, stateless computational rounds, and homomorphic
multiplication of encrypted shares (for the securely private
model. Our security-only model was, on average, 950% faster
than the securely private model (5 sigma confidence), 6,300%
faster than VIFF (5 sigma confidence), and 10,700% faster
than FairplayMP (5 sigma confidence. Our securely private
model was also faster than both other solutions, by smaller
but similar margins. What is really interesting, however, is how
our securely private model scales so incredibly well compared
to both VIFF and FairplayMP. The reason for this is described
in our conclusion.

VI. CONCLUSION

My findings showed that the implementation of our pro-
posed design exceeded expectations in all areas of perfor-
mance. Through the use of state-of-the-art advances in cryp-
tography, distributed consensus systems, and game-theoretic
protocols for secure computation, we have managed to devise
a realistic system for fast, secure, and incentivized secure
multiparty computation.

Our original design was left mostly intact. The main revision
was the addition of a feed-forward execution loop for the
pruning of nodes in individual securely private computational
rounds. Essentially, after every round the tree of nodes partic-
ipating is pruned by some predefined metric, such that only
the fastest (both computationally and by ping) are left. Ad-
ditionally, we are working on a pre-computation segmenting
algorithm.

With the exception of the above problem (and solution),
most problems encountered had to do with the dually compu-
tational and game-theoretic nature of this project. As opposed
to systems like FairplayMP and VIFF, we must constantly
take into account that there is a very real incentive (beyond
mischief) for an attacker to try to co-opt or subvert our
network. Thus, protocols like the aforementioned challenge-
deposit are required. Small details like those are scattered
throughout the project, in far, far, larger numbers than we
could present here.

As for Pandoras implications, it stands to completely revolu-
tionize the internet as we know it. Although Pandora may be a
stepping stone, it is the first of its kind. Web 3.0 is commonly
defined as connective intelligence it will connect concepts,
data, applications, and, ultimately, people. That is a very pure
distillation of what Pandora ultimately stands to do. It stands
to globally unify the disparate computational systems that exist
today. Leading industry figures are already moving in this
direction of unification (see: Google et al.s Open Compute),
because it is simply beneficial for all involved.

Charles Noyes is attending Villa Park High School. He has participated
in many high school science competition and enjoys doing research. He is

interested in the ways that blockchains can be applied to areas other than
digital currencies, and is currently looking for a research mentor.

REFERENCES

[1] A. Shamir, “How to share a secret,” Communications of the ACM,
1979.

[2] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, 2014.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[4] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentral-

ized computation platform with guaranteed privacy,” arXiv preprint
arXiv:1506.03471, 2015.

[5] A. Yao, “Protocols for secure computations,” Foundations of Computer
Science, 1982. SFCS’08. , 1982.

[6] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits.” USENIX Security Symposium,
2011.

[7] P. Laud and A. Pankova, “Verifiable computation in multiparty protocols
with honest majority,” Provable Security, 2014.

[8] C. Baum, E. Orsini, and P. Scholl, “Efficient secure multiparty
computation with identifiable abort,” pdfs.semanticscholar.org.

[9] Y. Lindell, B. Pinkas, N. Smart, and A. Yanai, “Efficient constant
round multi-party computation combining bmr and spdz,” Advances in
Cryptology– , 2015.

[10] C. Baum, I. Damgård, T. Toft, and R. Zakarias, “Better preprocessing
for secure multiparty computation,” eprint.iacr.org.

[11] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a system for
secure multi-party computation,” of the 15th ACM conference on ,
2008.

[12] M. Geisler, “Viff: Virtual ideal functionality framework,” Homepage:
http://viff. dk, 2007.

