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Motivation
This work aims at rigorously analyzing the approximation error of
evolutionary algorithms (EAs).

Background
Consider an EA for solving a maximization problem:

max f (x), subject to x ∈ S. (1)

Let fmax denote the fitness of the optimal solution and Ft the expected
fitness of the best solution found in the tth generation.

Definitions
The approximation error of the EA in the tth generation is

Et := fmax − Ft. (2)

If some positive constants α and β exist with

lim
t→+∞

Et
(Et−1)α

= β, (3)

then {Et; t = 0, 1, · · · } is called to converge to 0 in the order
α, with asymptotic error constant β [1, 2].

Research Questions
1 Order α =?
2 Asymptotic error constant β =?

An experimental study
EA-I: (1 + 1) EA using onebit mutation and elitist selection

EA-II: (1 + 1) EA using bitwise mutation and elitist selection

f (x): OneMax function

α: set to 1
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Figure: For EA-I and II, Et/Et−1 converge to some β but stochastic disturbance
exists on EA-II.

Analysis Tool
The analysis tool is Markov chain theory [3, 4].
Label all populations by indexes {0, 1, · · · , L} where indexes are sorted
according to the fitness value of populations from high to low:

fmax = f0 > f1 ≥ · · · ≥ fL = fmin, (4)

where fi denotes the fitness of the best individual in the i -th population.

ri ,j denotes the transition probability of an EA from j to i .

Matrix R denotes transition probabilities within the set {1, · · · , L}.

R :=


r1,1 r1,2 r1,3 · · · r1,L−1 r1,L
r2,1 r2,2 r2,3 · · · r2,L−1 r2,L
r3,1 r3,2 r3,3 · · · r3,L−1 r3,L
... ... ... ... ...
rL,1 rL,2 rL,3 · · · rL,L−1 rL,L

 . (5)

Vector q0 := (Pr(1),Pr(2), · · · ,Pr(L))T represent the probability
distribution of the initial population over the set {1, · · · , L}.

Suppose that EAs can be modelled by homogeneous Markov chains and
are convergent (approximation error Et → 0 when t → +∞).

Main Theoretical Result
1 In many cases, the order of convergence α = 1
2 Asymptotic error constant equals to the spectral radius: β = ρ(R).

General EAs
Under the particular initialization, that is, set q0 = v/|v| where v is an
eigenvector corresponding to the eigenvalue ρ(R) [4].

Theorem 1
Let R be the transition submatrix with ρ(R) < 1. Under particular
initialization , it holds for all t ≥ 1,

Et
Et−1

= ρ(R). (6)

That is α = 1 and β = ρ(R).

EAs with Primitive Transition Matrices
Case 1: transition matrix R is primitive.

Primitive matrix
A matrix R is called primitive if there exists a positive integer m
such that Rm > O.
This condition means that starting for any state i , an EA can reach
any other state j in m generations.

Under random initialization, that is, the initial population can be chosen
to be any non-optimal state with a positive probability. Equivalently,
q0 > 0.

Theorem 2
If R is primitive, then under random initialization, it holds

lim
t→+∞

Et
Et−1

= ρ(R). (7)

That is α = 1 and β = ρ(R).

EAs with Reducible Transition Matrices
Case 2: transition matrix R is reducible.

Definition
R is reducible if it can be split as

R =

(
R11 R12

O R22

)
(8)

where O is a zero-value submatrix.

Consider a special reducible transition matrix R that is an upper
triangular matrix:

R =


r1,1 r1,2 r1,3 · · · r1,L−1 r1,L
0 r2,2 r2,3 · · · r2,L−1 r2,L
0 0 r3,3 · · · r3,L−1 r3,L
... ... ... ... ...
0 0 0 · · · 0 rL,L

 . (9)

Theorem 3
If R is upper triangular with unique diagonal entry ri ,i , then under
random initialization, it holds

lim
t→+∞

Et
Et−1

= ρ(R). (10)

That is α = 1 and β = ρ(R).
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